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Figure 1: System overview. (a) The user creates a design model either by modeling from scratch or converting an existing polygonal model.
(b) The system runs a simulation to predict the resulting shape. (c) The beadwork model visualizes the expected result. (d) The system
computes the wire path. (e) The system provides a step-by-step construction guide. (f) The user manually constructs the physical beadwork.

Abstract

We introduce the interactive system “Beady” to assist the design
and construction of customized 3D beadwork. The user first creates
a polygonal mesh model called the design model that represents the
overall structure of the beadwork. Each edge of the mesh model
corresponds to a bead in the beadwork. We provide two methods to
create the design model. One is interactive modeling from scratch.
The user defines the mesh topology with gestural interaction and
the system continuously adjusts edge lengths by considering the
physical constraints among neighboring beads. The other is auto-
matic conversion that takes an existing polygonal model as input
and generates a near-hexagonal mesh model with a near-uniform
edge length as output. The system then converts the design model
into a beadwork model with the appropriate wiring. Computation
of an appropriate wiring path requires careful consideration, and we
present an algorithm based on face stripification of the mesh. The
system also provides a visual step-by-step guide to assist the man-
ual beadwork construction process. We show several beadwork de-
signs constructed by the authors and by test users using the system.
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1 Introduction

Beadwork is the art of connecting beads together by wires. While
common beadwork is two-dimensional (2D), three-dimensional
(3D) beadwork [Maki 2004; Freese 2007] is also popular in ori-
ental regions such as Japan and China. However, the design and
construction of 3D beadwork is very difficult. The final shape is
defined by the complicated three-dimensional interaction between
beads and wires, thus making the beadwork very difficult to de-
sign manually. One also needs to specify an appropriate wire path
to hold the beads together and to manually insert the wire into the
beads one by one, following the path to construct the beadwork.
Careful observation of existing beadwork structures shows several
geometrically interesting problems, which make beadwork design
a technical challenge.

Figure 2: Example beadworks created from existing 3D mod-
els. These are CG shapes rendered using commercial software (e-
frontier Shade8).

This paper presents an interactive computational system to assist
the design and construction of original beadwork. Figure 1 shows
the overall process. The user first creates a polygonal mesh model,
called a design model, which represents the overall structure of the
beadwork (Figure 1(a)). A bead of the beadwork is represented as
an edge (not a vertex) of the design model. The system then con-
verts the design model into a beadwork model by placing beads
on the edges with the appropriate wiring (Figure 1(c)). The user
specifies the color and shape of individual beads in the beadwork
model by using a painting interface. Finally, the user manually
constructs the physical beadwork by following the step-by-step in-
struction generated by the system (Figures 1(e) and (f)).



We provide two methods to create the design model. First, the sys-
tem provides a specialized modeling interface for the design of a
simple polygonal mesh model with near-uniform edge length. The
user first builds an approximate shape by combining predefined
primitives. Next, the user modifies the shape by applying a ba-
sic mesh editing operation such as face extrusion, edge insertion,
edge split, edge deletion, or vertex merger. We provide a modeless
gestural interaction for applying these operations to support rapid
exploration. The system also allows the user to add auxiliary parts
(bead chains) to the model.

Second, the system provides an automatic method that converts an
existing triangular mesh model to a design model. The system first
applies mesh reduction to the model until the number of edges (i.e.,
number of beads) is equal to the user-defined target number. The
system then makes a dual of the triangular mesh, yielding a polygo-
nal mesh with all vertices with valence three and mostly hexagonal
faces. Figure 2 shows examples of beadworks created from popular
mesh models.

Conversion of the design model into a beadwork model consists of
two main steps. The first step is geometry computation. The system
generates another polygonal mesh model, called a structure model,
by adding local wire connections between neighboring beads of the
design model (Figure 1(b)). The system runs a physical simula-
tion to compute the geometry of the resulting beadwork model by
considering the physical interaction among beads and wires. This
simulation runs during interactive modeling and updates the shape
of the design model after each editing operation. The second step
is wire path planning (Figure 1(d)). The wire path should be ap-
propriately defined to efficiently connect the beads. We show that a
valid wire path is given as an Eulerian cycle on a graph derived from
the structure model. However, a single wire path often makes the
manual construction process difficult. We therefore present an al-
gorithm that covers the design model with multiple face strips with
short branches, where each strip corresponds to a wire.

The contributions of this work are summarized as follows. (1) We
present a mesh modeling user interface specialized for beadwork
models by combining gestural operations and physical simulations.
(2) We present an algorithm to convert an existing triangular mesh
model into a design model appropriate for beadwork. The algo-
rithm applies mesh reduction while applying mesh beautification to
obtain a mesh whose edges have almost uniform length. It then
makes a dual of the triangular mesh to obtain a near-hexagonal
mesh model. (3) We present an algorithm based on face stripifi-
cation to compute the wire paths for a beadwork model designed
by the user. (4) We present a step-by-step construction guide to as-
sist the user in the manual construction process. (5) We show the
feasibility and effectiveness of our approach by presenting a real
implementation by test users.

2 Related Work

Various interesting systems have been proposed recently to sup-
port the fabrication of physical objects using state-of-the-art graph-
ics techniques. One approach is to take a given 3D model as in-
put and generate a physical model as output, such as a 3D poly-
omino puzzle [Lo et al. 2009], a bas-relief [Weyrich et al. 2007],
a paper craft [Mitani and Suzuki 2004; Shatz et al. 2006], a popup
card [Li et al. 2010; Li et al. 2011; Iizuka et al. 2011], a stuffed an-
imal [Julius et al. 2005], and a knitted animal [Igarashi et al. 2008].
Another approach is to support the interactive design of a physical
model by sketching, such as a garment [Decaudin et al. 2006] or a
plush toy [Mori and Igarashi 2007].

The design of a 3D model of a real-world object requires that
certain physical constraints be satisfied. For example, a pa-

per toy model has to be represented as a set of developable
patches. This kind of restriction is often discussed in the de-
sign of architecture consisting of freeform surfaces [Liu et al. 2006;
Schiftner et al. 2009]. Pottmann et al. [2010] called this new re-
search area architectural geometry. Related to this trend, recent
work presented methods to slightly modify the geometry of a polyg-
onal mesh to reduce the number of unique polygons contained in the
original model [Singh and Schaefer 2010; Eigensatz et al. 2010;
Fu et al. 2010].

Resampling of a polygonal mesh is a well-studied area.
Mesh reduction and simplification methods compute a
low-resolution approximation of a high-resolution original
mesh [Garland and Heckbert 1997; Cohen-Steiner et al. 2004].
However, these methods usually do not consider the uniform
distribution of vertices. Retiling and beautification methods
seek a uniform distribution of vertices on the original mesh
surface [Turk 1992; Markosian et al. 1999]. These methods
assume a reasonably high vertex density and can fail to cover a
high-curvature region with a low-resolution mesh. Our reduction
is closely related to the problems of isotropic remeshing and
Voronoi surface tessellation [Yan et al. 2009; Lévy and Liu 2010;
Nieser et al. 2010]. The resolution of the resampled mesh in their
work is significantly higher than that in our work. Sampling
with a low resolution mesh is difficult because the subject could
easily loose sharp features that were in the original mesh, which
we address in this work. Igarashi et al. [2003] extended the skin
algorithm [Markosian et al. 1999] to handle high-curvature regions
by adjusting the vertex density depending on the curvature. Our
method is also an extension of the skin algorithm, but it uses a
constant vertex density.

3 Observation of Existing Beadwork

We investigated existing beadworks in textbooks and in local shops
as a basis for the user interface and the algorithm design. We ob-
served that a 3D beadwork model can be seen as a closed man-
ifold polygonal mesh model with mostly uniform edge lengths.
Each edge of the polygonal mesh corresponds to a bead, and each
face corresponds to a cycle formed by the beads. Faces in a low-
curvature region are mostly hexagonal, and pentagons and quads
appear occasionally in high-curvature regions. Non-manifold struc-
tures such as linear chains are used occasionally, but they can be
seen as extra attachments to the main manifold mesh. Most bead-
work models consist of a few separate parts, such as head, body,
arms, and legs, and use one wire for each part. A wire passes
through each bead two times to connect the bead to the left- and
right-hand side face of the edge (bead).

As shown in Figure 3 [Maki 2004], textbooks use a 2D diagram
to explain how to construct a beadwork model. This is seen as a

Figure 3: A beadwork and a construction guide in a textbook. Cited
from [Maki 2004] with permission.



flattening of the polygonal mesh. The construction process starts
by putting a bead in the middle of a long wire and then adding
beads one by one to both ends of the wire. These two ends of the
wire are color coded. One half of the wire is shown in blue and the
other half is shown in red. Construction proceeds by forming the
faces of the polygon one by one with the red and blue wires.

4 Workflow

This section describes the system from the user’s point of view.
The user designs a 3D beadwork as a simple polygonal mesh called
a design model. An edge of the mesh corresponds to a bead, and
thus the edges have mostly uniform lengths (exact length is deter-
mined by a physical simulation that considers the interaction be-
tween wires and beads). Each face is not necessarily planar. The
user can use either an interactive modeling interface or an automatic
conversion to obtain a design model. Next, the user defines the ap-
pearance of the model by choosing the shape and color of each
bead. The system guides the manual construction of the physical
beadwork by displaying a step-by-step guide to the user.

4.1 Interactive Modeling

The user creates the geometry of the beadwork model interactively.
Starting with basic primitives, the user interactively edits the primi-
tives by using gestural operations. The system runs a physical sim-
ulation (Section 5.3) after each editing operation and updates the
mesh on the screen to enforce the constraint. The user only specifies
the topology of the mesh and the vertex positions are automatically
decided.

Combining Basic Primitives: The user starts a new model by
combining the predefined primitives. Similar method was used in
the modeling system presented by Leblanc et al. [2011], in which
the user defines a shape as a collection of generalized cuboid prim-
itives. We provide a regular polyhedron and some semi-regular
polyhedrons as primitives. All primitives consist of edges of a unit
length. A copy of a selected primitive appears at the center of the
screen. The user can also append a primitive to the model by click-
ing on a face of the model. The system searches for a face with the
same number of edges in the selected primitive and pastes it on the
model by merging the corresponding faces. Nothing happens when
the selected primitive does not have a face with the same number
of edges. We chose this approach because we observed that most
existing beadwork models can be seen as a combination of these
simple primitives. Pasting a primitive is useful for designing the
head, arms, and legs of animal models.

Mesh Editing Operations: The user modifies the model by using
the mesh editing operations shown in Figure 4. These operations
are designed to maintain the mesh as a manifold. The overall shape
is already given as a combination of primitives and we expect that
these editing operations are only used to adjust the shape locally.
We implemented these editing operations as a modeless context-
sensitive gestural interaction. The user either clicks on a component
(face, edge, or vertex) or draws a short line by a dragging operation,
and the system takes the appropriate action. The physical simula-
tion adjusts the overall geometry after each of these operations. We
show an example of a modeling sequence in Figure 5.

4.2 Importing Existing Polygonal Models

The user can also import an existing polygonal mesh model into the
system. The current implementation requires the model to form a
manifold surface and consists of triangular faces. It also expects the
mesh to be reasonably well sampled. The system then converts the

Primitive addition Face extrusion Edge split

Edge deletion Edge insertion Vertex merger

Add chain Face connection

Figure 4: Mesh editing operations.

Figure 5: Example of a modeling sequence using the gestural in-
terface. The user only specifies the topology of the mesh by using
the gestural interface. The vertex positions are automatically given
by a physical simulation.

triangular mesh into a near-hexagonal mesh with almost uniform
edge lengths (Figure 6). The number of resulting edges is set by the
user.

Figure 6: Examples of automatic conversions from existing 3D
models.

We chose to use hexagonal meshes because we observed that exist-
ing beadworks, especially large ones, typically consist of hexago-
nal faces. This is probably because a hexagonal mesh (honeycomb
lattice) is the most efficient structure to hold a flat surface with min-
imum support materials. We also found that a near-hexagonal mesh
obtained as a dual of a triangular mesh yields a more aesthetically
pleasing beadwork model after running the physical simulation, as
shown in Figure 7. This is probably because wires make the surface
as flat as possible in a hexagonal mesh, but it is not possible to do
so in a triangular mesh due to insufficient flexibility.

4.3 Appearance Design and Construction Guide

The system shows the resulting beadwork model on the screen dur-
ing interactive modeling. The user paints the bead model by using
paint brush tools (Figure 8). Then, the user selects the bead shape
and color, and paints the bead model by dragging the mouse. The



Figure 7: Comparison of triangular and mostly hexagonal meshes
after the physical simulation. The hexagonal mesh is obtained as a
dual of the triangular mesh.

shape and color of the beads designated by the mouse cursor are
changed. We also provide a flood fill operation. Our current im-
plementation uses pre-defined shapes and colors, but we plan to
support customized bead shapes and colors in the future.

Figure 8: Screenshot of our system in the painting mode.

The system guides the manual construction of a physical beadwork
by showing step-by-step instruction. The traditional printed bead-
work instructions in textbooks use a specialized 2D diagram rep-
resentation as the guide (Figure 3), but it is very tedious and dif-
ficult because the user needs to keep track of the relation between
beads in the physical 3D beadwork and those in the 2D instruction.
Our step-by-step instruction takes advantage of the expressiveness
of interactive 3D graphics and makes it easier to understand the
construction procedure. This interactive guide is inspired by re-
cent work on assembly instruction [Agrawala et al. 2003], cutaway
illustration [Li et al. 2007], and exploded diagrams [Li et al. 2008].

The construction guide shows which wire passes which bead in
each step as 3D graphics. Figure 9 shows an example sequence.
The user can view each step from an arbitrary viewing direction.
The user presses the “next” button to proceed to the next step and
presses the “prev” button to return to the previous step. The con-
struction starts by placing a bead in the middle of a long wire (Fig-
ure 9(a)). One side of the wire is blue and the other side is red.
The system shows the initial length of each side. The construc-
tion proceeds by inserting the blue or the red wire into an existing
or new bead. A loop shows the wire that is used in the step (Fig-
ure 9(b) through (f)), and an arrow indicates that the wire passes a
bead newly added to the beadwork (Figures 9(b), (c), (d), and (f)).
Otherwise, the wire passes a bead already included in the beadwork
(Figure 9(e)).

(a) (b) (c) (d) (e) (f)

Figure 9: An example of the visual construction guide. (a) Initial
state. (b),(c),(f) Blue wire passes a newly added bead. (d) Red wire
passes a newly added bead. (e) Red wire passes an existing bead.

5 Algorithm

The system maintains three different model representations. The
first one is the design model, which is a polygonal mesh model
shown to the user during interactive modeling (Figure 1(a)). Each
edge of the design model corresponds to a bead and each vertex
corresponds to a set of wire segments connecting the surrounding
beads. The second representation is the structure model, which
is another polygonal mesh model that represents a more detailed
structure (Figure 1(b)). This model is used for computing the ap-
propriate shape of the beadwork by considering the physical con-
straints among beads. A structure model consists of bead edges,
each of which represents a bead, and wire edges, each of which
represents a wire fragment between two beads. The third represen-
tation is the beadwork model, which consists of beads connected
together by wires with an appropriate wire path (Figures 1(c) and
(d)). This section first describes the algorithm to convert an exist-
ing 3D model to a design model. It then describes the construction
of the structure model and the physical simulation of the structure
model. Finally, it describes the computation of the wire path neces-
sary for construction of the beadwork model.

5.1 Converting a 3D Model to a Beadwork Model

Our goal is to convert a 3D triangular mesh model into a design
model, which is a low-resolution near-hexagonal mesh with almost
uniform edge length. The number of edges in the resulting design
model is given by the user. The process consists of two steps (Fig-
ure 10). First, the system applies mesh reduction to the input mesh,
while applying mesh beautification to make the edge length near-
uniform. Second, the system constructs a near-hexagonal mesh by
making a dual of the reduced triangular mesh.

Input mesh
#edges 3111

Reduction mesh
#edges 600

Dual-polyhedron Apply simulation

Figure 10: Automatic conversion.

The mesh reduction process iteratively removes the shortest edge
while applying mesh beautification after each iteration. We use the
algorithm described in [Markosian et al. 1999] with the offset set
to zero for the beautification. The algorithm repeatedly adjusts the
position and connectivity of the mesh to obtain a mesh with a near-
uniform edge length and a near-uniform vertex distribution while
preserving the original overall shape. Specifically, the system first
makes a copy (called a skin mesh) of the input mesh (called a skele-
ton mesh) and moves the skin vertices to the centers of surrounding



vertices while updating its connectivity on the fixed skeleton mesh.

We make three changes to the original skin algorithm to satisfy our
needs, First, we only apply edge swap and do not apply edge split
and edge collapse in the beautification process so that it does not
change the number of edges during beautification. This works well
when the edges in the input mesh are sufficiently short. Other-
wise, it is necessary to refine the mesh as a pre-process. Second,
we move the skin vertices only on the skeleton vertices discretely
for efficiency. This is also because the skin mesh becomes very
coarse in our case and the center of neighboring skin vertices at
high curvature region goes deep inside of the skeleton mesh, mak-
ing the resulting skin mesh non-uniform after pushing the center
to the skeleton surface (Figure 11). We therefore discretely eval-
uate nearby skeleton vertices and pick the one that produces the
most uniform distribution of skin vertices on the skeleton surface.
Specifically, for each nearby skeleton vertex we compute distances
to the neighboring skin vertices and pick the maximum. We then
take the skin vertex that returns the minimum of these maximums.
This discrete method works for us because we only need final mesh
connectivity and specific vertex positions are less important.

Figure 11: Vertex relocation. The original Skin algorithm moves
the vertex to the center of neighboring vertices and then pushes
it to the skeleton surface (left). Our method discretely evaluates
nearby skeleton vertices and picks the one that minimizes the largest
distance to the neighboring skin vertices (right).

Finally, we explicitly detect cases where a protrusion of the skele-
ton mesh sticks out of the skin mesh and pull the skin mesh to the
tip of the protrusion to cover it. This problem occurs because the
skin vertices always stay on the skeleton mesh but skin edges and
faces can go inside of the skeleton mesh (Figure 12). To fix this
efficiently, we monitor the distance from each skeleton vertex to
the nearest skin vertex and constrain the skin vertex to the skeleton
vertex position when the distance exceeds a predefined threshold α
(2-5% of bounding box of the input mesh). The original paper used
local search to keep track of a skeleton vertex nearest to each skin
vertex. We use the same algorithm to keep track of a skin vertex
nearest to each skeleton vertex.

Construction of the near-hexagonal mesh is straightforward. The
system simply replaces vertices and faces of the triangular mesh
with faces and vertices of the hexagonal mesh, respectively. Each
vertex of the hexagonal mesh has valence three by construction,
and each face typically has five to seven edges. The system then
performs a physical simulation (Section 5.3) to obtain the final ge-
ometry. Strictly speaking, we want to have uniform edge lengths in
the hexagonal dual mesh, so the edge length of the triangular mesh
should vary depending on the vertex valence. However, we ignore
this in the current implementation because the valences are typi-
cally 5 to 7 and the differences are small. In addition, uniformity of
the edge length in the hexagonal mesh is not rigorous, because the
length changes after the physical simulation.

5.2 Construction of the Structure Model

The structure model is generated by adding a wire edge to each
corner of a face in the design model (Figure 13, left). Each valence
n vertex is replaced by n wire edges and n new vertices between
them. This construction naturally connects two wire edges to each

Skeleton mesh Original Skin algorithm Our algorithm

Figure 12: The original Skin algorithm can fail to cover a protru-
sion in the skeleton mesh. We explicitly identify such a case and fix
a skin mesh vertex to the tip of the protrusion.

end of a bead edge so that a wire passes through each bead two
times, as in existing beadworks. The initial position of a new vertex
is given by moving the original vertex slightly toward the center
of the corresponding edge. We handle linear chains separately after
applying the above procedure to the design model (Figure 13, right).
The system connects each linear chain to one of the wire edges that
share a vertex in the design model, i.e., the wire edge is split and
connected to an end of a linear chain.

Figure 13: Construction of the structure model without (left) and
with (right) a chain. Orange and green edges are bead edges and
wire edges, respectively.

5.3 Physical Simulation of the Structure Model

The system adjusts the shape of the structure model to satisfy the
physical constraints among neighboring beads: beads do not inter-
sect each other and beads connected by a wire are as closely located
as possible. We achieve this by running a simple mass-spring sim-
ulation cycle 500 times after each mesh editing operation. The sys-
tem then updates the design model by moving its vertex positions
to the center of corresponding vertices of the structure model.

We apply the following three forces to the vertices of the structure
model in the simulation. The first force is edge springs to keep the
edges to the desired lengths. The rest length of a bead edge is set
to the length of the bead, and the rest length of a wire edge is set
to zero. The second force is angular springs that keep the wires as
straight as possible. The system examines the angles between each
wire edge and the bead edges connected to it, and applies a force to
keep them straight. The third force is a repulsion force to prevent
the neighboring beads from penetrating each other.

5.4 Computing the Wire Paths

A wire path defines the order in which a wire connects the beads to
hold them in place. Based on careful examination of existing bead-
work designs, we made the following three goals for the algorithm.
First, wires should pass through a bead for the minimum number
of times necessary to hold the bead. In our case, it is always two,
except for chains. Second, the minimum number of wires should be
used to reduce the need for cutting and tying a wire. Third, the wire
path should be designed so that the bead in the beadwork during the
construction is as stable as possible. We consider a bead to be stable
when the position of the bead is stably fixed to a specific location by
the wires; that is, the bead belongs to a completed face (Figure 14).



An unstable bead makes manual construction extremely difficult
because the user has to manually hold it. It is therefore crucial to
design a wire path that minimizes the occurrence of unstable beads
during construction. The second and third requirements conflict
with each other, and so our method balances the two while always
satisfying the first requirement.The following wire path planning
algorithm works for an arbitrary manifold surface regardless of the
vertex valence or the surface genus.

 stable bead

unstable bead

Figure 14: Stable and unstable beads appearing during construc-
tion.

Given the design model (Figure 15(a)), we start the process with
the structure model (Figure 15(b)). The structure model defines the
local wire connectivity. A global wire path (Figure 15(c)) is given
as a loop that meets all wire edges once and all bead edges twice.
This is the Eulerian cycle of the wire graph (Figure 15(d)), obtained
by contracting the bead edges into vertices, with an additional con-
straint that a wire going into a bead should go out from the other
side of the bead. The existence of an Eulerian cycle is guaranteed
by the construction because each bead edge always has four wire
edges. Various methods exist for obtaining such an Eulerian cycle.

However, an arbitrary Eulerian cycle (e.g., Figure 15(d)) can be in-
convenient in the manual construction process because it can cause
many unstable beads during construction (Figure 15(e)). We care-
fully examined existing beadwork designs and found that the prob-
lem of reducing unstable beads can be solved by using a face strip
(Figures 15(f) and (g)). The design model is covered by a face strip,
and then a wire path is placed so that it completes the faces in the
strip one by one. This method makes all the beads in the previously
visited faces stable during construction (Figure 15(h)). In cases that
the model is not fully covered by a single strip, the system adds re-
maining faces as a branch to the strip, and places the wire path so
that it strays off from the strip, visits the faces in the branch, and
goes back to the strip (Figure 16). Such branches cause unstable
beads, and so we restrict the length of a branch to one. We create
independent face strips with branches for the remaining area until
strips and their branches cover all the faces. Figure 17 shows ex-
amples of the stripification results. The first strip covers most of
the surface and additional strips cover protrusions such as ears and
arms.

The computation of a single face strip without any branch corre-
sponds to finding a Hamiltonian path on the dual graph obtained
by replacing the faces with vertices of the design model. How-
ever, it is not guaranteed that such a path exists. A practical
alternative is constructing a spanning tree with some branches,
and various heuristics have been presented for improving the
rendering performance [Evans et al. 1996] and the data compres-
sion [Taubin and Rossignac 1998]. We also use a heuristic method
specialized for our problem. Our method is a greedy expansion
starting from a base face, followed by adding faces adjacent to the
face at the end of the strip. We select one among the candidate faces
so that the boundary length is minimized. The boundary length is
given as the total length of the edges between the current face strip
and the remaining faces. This keeps the intermediate beadwork
model compact, thus making manual construction easier. We apply
backtracking when the expansion is trapped into a dead end. We
run this greedy expansion search starting from all faces and use the
most successful result.
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(a) Design model (b) Structure model (c) Wire graph (d) An Euler path of (c)

(f) Typical wire path (h) Intermediate

      status of (f)

(g) Face strip 

      strucutre of (f)

(e) Intermediate

     status of (d)

Figure 15: Details of the wire path-planning algorithm.

 

(a) (b) (c) (d) (e)

Figure 16: Stripification process. (a) Initial strip. (b) Adding
branches. (c) Second strip and its branches. (d) Wire paths for
the strips. (e) Modified wire paths to cover the branches.

(34, 0) (95, 4), (4, 0) (149, 3)

Figure 17: Stripification results. The thick tan lines show the main
strips and the thin lines show the branches. Each tuple corresponds
to a strip (the number of faces in the strip and the number of its
branches).

6 Results

The prototype system is implemented using Java on a laptop (1.2
GHz CPU, 2 GB RAM). Figure 18 show some example beadwork
models designed and constructed by using the system. Designing
these models required 10 to 20 minutes, which included creative ex-
perimentation and exploration. Manual construction of each model
by following the guide required a few hours. The beadwork bear is
an exception: it was bought at a local shop. We created the model
by referring to the product, which required approximately 90 min-
utes. Table 1 shows the performance measurements of the designed
models in Figures 1 and 18. Modeling and wire path planning were
completed almost instantly in most cases, whereas they lasted a few
seconds in the complicated case.

Figure 2 shows example beadworks created from existing 3D mod-
els. These are CG models rendered using commercial software. We
used 600 beads for these models to obtain reasonable results. Ide-
ally we wanted to use fewer beads to make the manual construction
easier, but it was difficult to obtain aesthetically pleasing results
by using the mesh reduction approach. Extreme simplification re-



Figure 18: Example models designed by the authors. Top: design
models. Middle: beadwork models. Bottom: real beadworks.

Table 1: Performance measurements of the models in Figures 1
and 18.

Dog Penguin Lizard Mouse Bear

# beads 203 66 77 96 372
Simulation (sec.) 1.3 0.5 0.5 0.7 2.5
Wire (sec.) 0.7 0.2 0.1 0.3 5.6

quires artistic skill, as in the design of low-resolution bitmap images
(pixel arts), and it is necessary to develop completely a different al-
gorithm. Physical construction took approximately 15 hours each
for the bunny and dragon (Figure 19). Table 2 shows the perfor-
mance measurements and relevant statistics. Table 3 shows that the
converted design models are mostly hexagonal.

7 User Experience

We asked five test users to try the interactive modeling system and
obtained their feedback. They used interactive geometry modeling
to create their original design. The users were university students
in the Department of Computer Science who did not have any ex-
perience in making beadwork. The users were given a five-minute
tutorial and free practice for another five minutes. All of the sub-
jects learned the operations instantly without any difficulties. Then,
we asked the users to design their own original beadwork until they
were satisfied with the design. Figure 20 shows the results designed

Table 2: Performance measurements and relevant statistics to con-
vert existing 3D models into beadwork models in Figure 2.

Dragon Armadillo Horse Squirrel Bunny Bear

Init #edges 2796 2992 3000 3063 3111 5964
# beads 600 600 600 600 600 600
distance α 0.02 0.05 0.05 0.05 0.02 0.03
fixed #vertices 102 23 11 3 81 20
Convert (ms) 2930 3086 3013 2943 3092 7939
· Reduction 1462 1585 1522 1426 1589 6396
· Dual 28 25 23 24 34 26
· Sim 1440 1476 1468 1493 1469 1517

Wire (ms) 7468 10833 14527 4677 14006 7768

Figure 19: Photo of the real beadworks. The diameter of a bead is
4mm.

by the subjects and the time required to design each: the first three
are photos of the real beadwork and the others are CG models. Ta-
ble 4 shows the gestural operations for each beadwork. The most
used operation during the study was “Add primitive.” This opera-
tion was used to design the rough forms at the beginning. Other
operations were used to refine the details. The “Add chain” oper-
ation was used to add detailed parts at the finish. Although this
operation generates a non-manifold mesh, it served an important
role in designing the beadwork.

flower (25min)

bear (25min)

airplane (25min)

seal (20min) cat (20min)

CG CG

Figure 20: 3D models designed by the subjects and the time re-
quired to design each. All models were the subjects’ original de-
signs.

Most comments from the subjects were positive, such as “It was
very helpful that the system displayed the bead 3D model when
I edited the mesh model,” and “I could concentrate on designing
shapes without thinking about the structure of the beadwork.” We
believe that our system successfully enabled these novice users to
design their own original beadwork. Some users offered sugges-
tions, such as “It would be nice if the system provided an operation
to add flat planes,” and “It was difficult to control the location of
beads precisely while I completed my beadwork.” These sugges-
tions are possible enhancements for varying the modeling opera-
tions. Three users constructed the designed beadworks manually
by referring to the step-by-step guide. We provided large beads
(approximately 10 mm in diameter) to make the work easy. The
beadworks of the first three models in Figure 20 were successfully
constructed within a half day.



Table 3: The ratio of hexagons and other polygons in the converted design models in Figure 2.
hhhhhhhhhhhModel

# of sides per face
3 4 5 6 7 8 9 10

Bunny 3 (1%) 13 (6%) 36 (18%) 106 (52%) 33 (16%) 8 (4%) 2 (1%) 1 (0%)
Dragon 9 (5%) 20 (10%) 23 (12%) 98 (49%) 31 (16%) 10 (5%) 4 (2%) 1 (1%)

Bear 1 (0%) 6 (3%) 42 (21%) 114 (56%) 34 (17%) 4 (2%) 1 (0%) 0 (0%)
Armadillo 10 (5%) 12 (6%) 27 (13%) 100 (50%) 42 (21%) 7 (3%) 3 (1%) 1 (0%)

Horse 5 (2%) 5 (2%) 30 (15%) 127 (63%) 29 (14%) 4 (2%) 2 (1%) 0 (0%)
Squirrel 3 (1%) 5 (2%) 49 (24%) 107 (53%) 24 (12%) 10 (5%) 4 (2%) 0 (0%)

By interviewing professional beadwork designers, we confirmed
that our system is very useful for designing beadwork, even for pro-
fessionals. In their company, a 3D polygon model was first created
using a standard 3D modeling software. A professional designer
then designed a beadwork model based on the 3D model. In this
way, it was confirmed that both methods (gestural modeling and
automatic conversion) are compatible with current practice and are
immediately applicable.

Table 4: Gestural operations for each beadwork in Figure 20.
Users Seal Cat Bear Airplane Flower

Undo 27 21 47 19 39
Add primitive 3 21 10 25 67

Add chain 5 13 6 9 25
Edge deletion 31 0 5 16 2
Face extrusion 17 5 41 32 4

Edge split 2 0 2 21 17
Vertex merge 15 0 0 0 0
Edge insertion 0 8 16 0 3

8 Limitations and Future Work

Our current interactive modeling interface was designed for gen-
eral polygonal meshes and not specifically designed for hexagonal
meshes. We did not find this very problematic because the users
only designed small beadworks in interactive editing and the re-
quirement for a hexagonal mesh is not very important in such small
beadworks. A hexagonal mesh is important for larger beadworks
and it might be useful to implement some mechanism to facilitate
construction and editing of hexagonal meshes in the future.

Figure 21: Failure cases of simplification. The number of edges is
200 and the parameter α is 0.02 in both models.

Our target in this work is very basic beadwork models. Many more
techniques are used in real beadwork, such as combining beads of
different sizes and creating non-manifold structures other than sim-
ple open chains. It is our future work to support these advanced
techniques. Wire may need to visit some edges more than twice
when there are non-manifold vertices in the mesh. Most beadwork

is symmetric, so automatic symmetrization of the model during in-
teractive editing could be very helpful. Symmetry could also be
useful for computing better wire paths.

The final reduced mesh shape is determined by the combination of
parameters and the total number of beads specified by the user. If
the user specifies a very small number of beads, the final mesh can
contain self-intersections, as shown in Figure 21, because we cur-
rently do not consider collisions between faces and edges. If the
input model contains thin parts, such as the legs of a horse, it is
better to use chains, as shown in the mouse model in Figure 18. We
plan to extend the conversion algorithm to produce chains automat-
ically by considering the skeletal structure of the input mesh.

Figure 22: Straw model.

Creating complicated objects by
assembling simple primitives with
wires is a very general idea and
the method presented in this pa-
per could be useful for designing
physical objects other than bead-
work. For example, the same
user interface and algorithm can
be used for the design of a model
consisting of equal-length straws
tied together by a string, as shown
in Figure 22. An important differ-
ence is that quads and pentagons are not stable in a straw model.
Nevertheless, we plan to extend our techniques to support the de-
sign of such physical objects, including a potential form of archi-
tecture.
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