
16TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2014 ISGG
4–8 AUGUST, 2014, INNSBRUCK, AUSTRIA

Paper #40

ENUMERATION OF DELTAHEDRAL GRAPHS
WITH UP TO 10 VERTICES
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ABSTRACT: In this paper, we enumerate the polyhedral graphs that are realizable as deltahedra with
up to ten vertices. We call these “deltahedral graphs”. This result was achieved by an experimental
approach that trying to construct deltahedra from each of the simple cubic polyhedral graphs. We
also provide examples of the graphs that are not realizable as deltahedra. We show that the infinite
families of such nonrealizable graphs can be obtained by solving the graph isomorphism problem.
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1. INTRODUCTION
A deltahedron is a polyhedron whose faces are
congruent equilateral triangles. Only eight of
these are convex: those having 4, 6, 8, 10, 12,
14, 16, or 20 faces [5]. Coplanar faces sharing
an edge are not allowed. The tetrahedron, octa-
hedron, and icosahedron are the three deltahedra
that are regular solids. If we permit nonconvex
shapes, then the number of deltahedra is infinite,
because we can compose larger deltahedra by at-
taching two smaller deltahedra.

There are several subclasses of deltahedra.
Cundy listed 17 biform deltahedra, which have
only two forms of vertices [4]. Olshevsky added
another 11 biform deltahedra to Cundy’s list [9].
These lists did not permit intersecting faces, so
these biform deltahedra are solids. Shephard
presented 34 isohedral deltahedra, and McNeill
added six further examples to Shephard’s list [8,
13]. Isohedral deltahedra are face-transitive and
may include intersecting faces. Trigg defined
spiral deltahedra as those constructed from strips
of equilateral triangles [14].

Each of these classes of deltahedra have their
own particular properties. Therefore, the con-
figurations of the vertices are very limited. We
decided to loosen the conditions and see what
kinds of shapes are possible in the world of

deltahedra. In this study, we tried to construct
deltahedra from each of the simple polyhedral
graphs and counted the graphs that can be con-
structed as deltahedra, that is, the deltahedral
graphs. It is hard to determine whether a graph
will form a deltahedron by examining only its
structure. Thus, we solve a geometric realization
problem, which is the problem of determining
whether a triangulation of an orientable surface
can be realized geometrically in R3 as a polyhe-
dron without self-intersections [6].

We present an enumeration of all deltahedral
graphs with up to ten vertices and provide ex-
amples of the constructed deltahedra. In our re-
alization process, we generate an initial polyhe-
dron with nonequilateral triangles and then de-
form the faces into equilateral triangles by a gra-
dient method, because the graph does not pro-
vide the locations of the vertices. Olshevsky
focused on the operations used to construct the
deltahedra [9]. Augmentation is an operation
that joins each appendage polyhedron to its own
single-core face. These simple operations can be
detected by solving a graph isomorphism prob-
lem. We show that this is useful for finding an
infinite family of graphs that are nonrealizable
as deltahedra. Note that our result of an enumer-
ation is not theoretical. We provide a realiza-



tion process that constructs a deltahedron from a
graph, but it does not necessarily guarantee the
nonrealizability of a graph.

Our deltahedral realization problem is a par-
ticular case of a geometric realization problem.
In general, Bokowski and Guedes de Oliveira [1]
showed that there is a nonrealizable triangula-
tion of the orientable surface of genus 6, and
Schewe [12] showed that we can construct non-
realizable triangulations for any number of ver-
tices genus 5 or 6. However, for surfaces of
genus 1 ≤ g ≤ 4, the problem remains open. The
conditions for deltahedral realization are stricter
than those. Each face must be realized as an
equilateral triangle, and it is necessary to cal-
culate the geometric coordinates to determine
whether there exist self-intersections or edges
whose dihedral angle is equal to 180◦. In this
paper, we focus on a surface of genus 0. Previ-
ous studies of deltahedra mentioned above also
focused on the genus-0 surface. Although a few
deltahedra with g > 0 are known, we know of no
published studies.

2. DELTAHEDRAL GRAPH
Polyhedral graphs are three-connected planar
graphs. These graphs contain not only triangular
faces, but polygonal faces which have more than
four edges. A cubic polyhedral graph is a three-
connected cubic planar graph and has only trian-
gular faces. This graph is realized as a polyhe-
dron whose faces are triangles, that is, a simple
polyhedron. Deltahedra are a subclass of simple
polyhedra because they are composed of equilat-
eral triangles. Therefore, the graphs of deltahe-
dra are a subclass of the graphs of simple poly-
hedra. The relation between them is shown in
Figure 1.

Here we define a deltahedral graph as a graph
which can be realized as a deltahedron. Al-
though there are various kinds of deltahedra, we
will include only deltahedron that do not have
any self-intersections and do not have any edges
for which the dihedral angle is 180◦. For ex-
ample, all the polyhedra in Figure 2 are com-

Polyhedral graphs

Cubic polyhedral graphs

Deltahedral graphs

Figure 1: Relation between polyhedral graphs
and deltahedral graphs.

posed of congruent equilateral triangles. How-
ever, the lower left one (924,N) has intersecting
faces, and the lower right one (812,N) has copla-
nar and connecting faces. In this paper, we will
not consider deltahedron like these lower ones
but only those like the topmost example (917,D)
in Figure 2. The code below each figure is com-
posed of two numbers and a character. The num-
bers represent the number of vertices and the in-
dex of the graph. The index follows the order
of an existing graph generation algorithm [3],
and they are classified into one of two categories:
‘D’ for deltahedral graphs, and ‘N’ for nondelta-
hedral graphs. For example, (61,D) is the first
six-vertex deltahedral graph that is generated by
that algorithm. The important thing is that more
than one deltahedra may be obtained from a sin-
gle graph. Figure 3 shows a deltahedral graph
that has one convex form and two nonconvex
forms. If a graph has at least one deltahedron,
we say it is deltahedral.

3. APPROACH
We enumerate the deltahedral graphs which are
combinatorially different. The class of deltahe-
dra is a subset of the class of simple polyhedra
whose faces are triangles. Therefore, the num-
ber of three-connected cubic polyhedral graphs
is an upper bound on the number of deltahe-
dral graphs. Graph enumeration has been widely
discussed, and there are many approaches to it.
We used the planar graph generation program
plantri [3] to obtain the three-connected cubic
planar graphs.

We used two steps to realize the graphs. First,
each graph was embedded without intersections
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(917,D)

(924,N) has intersect-
ing faces

(812,N) has coplanar
and connecting faces

Figure 2: Polyhedra with equilateral triangles.
The top polyhedron is a deltahedron and the oth-
ers are not.

in the 2D plane with straight line edges. Then,
we used graph lifting [11] and an iterative defor-
mation process to attempt to construct deltahe-
dra from the graph. A constructed polyhedron
may have coplanar neighboring faces or may not
even be a solid. The graph was considered to be
a deltahedral graph only if the constructed geom-
etry satisfied the conditions for a deltahedron.

As mentioned above, nonconvex deltahedra
form an infinite class, and so in order to enumer-
ate them, it is necessary to limit the allowable
number of vertices. We chose this limit to be
ten. As an upper bound, there are 306 polyhe-
dral graphs which have ten or less vertices. We
decided that is enough for the first step of this
enumeration problem.

3.1 Graph Embedding
Several methods have been proposed for embed-
ding planar graphs. We used Plestenjak’s algo-
rithm, which is based on a spring model [10].
The size of the graph is small enough that it is
practical to calculate it. This algorithm chooses
a base face and fixes the positions of its ver-
tices in the 2D plane. The remaining vertices
are placed inside the base face. We choose the
base face randomly and place it so that it forms

Graph 950 Convex

Nonconvex Nonconvex

Figure 3: One convex shape and two nonconvex
shapes form the graph 950

an equilateral triangle with edges of unit length.
The algorithm calculates the periphericity pv of
each vertex when placing the inner vertices. Pe-
riphericity is a kind of centrality and indicates
the distance from the outer polygon. The pv of
the outer triangle is 0, and the pv of the vertices
adjacent to them is 1. The pv increases as go-
ing toward the inside. These periphericities are
used when generating the initial polyhedron to
be used in the iterative deformation. Figure 4(a)
is an example of an embedded graph. In this
step, the base face is chosen randomly. The re-
sults of following steps are different, depending
on this initial choice.

3.2 Realization of Deltahedra
First, we generate a polyhedron with nonequi-
lateral triangles from an embedded graph. Al-
though this polyhedron will be deformed to a
deltahedron, it should be close to a deltahedron.
We obtained the heights hv for the vertices corre-
sponding to each pv by using the following for-
mula:

hv =Cpv

where C is a constant value that defines the
height of the pyramid-like model shown in Fig-
ure 4(b). The base face was then shrunk to re-
duce the differences in the lengths of the edges
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Figure 4: Realization process.

(Figure 4(c)).
Finally, we transformed the generated polyhe-

dron to form a deltahedron by using numerical
optimization. We defined a penalty function F
which measures the difference in length of the
edges, and we then minimized it:

F := ∑
i
(L(Ei)−1.0)2

where L(Ei) is the length of Ei. We used the
Levenberg-Marquardt algorithm for the itera-
tions and the Gauss-Seidel method for solving
the linear equations within each iteration. The
resulting polyhedron may include intersecting
faces. When this was the case, we tried a dif-
ferent embedding or manually reconfigured the
positions of the vertices.

Convergence of this method is not guaranteed.
However, there exists a vertex configuration that
makes all the lengths of the edges equal when
self intersection is not considered. The proof is
as follows. There are only three operations for
generating all triangulations[2] including:

a) Adding a vertex of degree 3

b) Removing an edge and adding a vertex of
degree 4

c) Removing two edges and adding a vertex of
degree 5

Minimum graph Operation (a)

Operation (b) Operation (c)

Figure 5: Operations for generation of simple
triangulations.

The minimum four-vertex graph is realized as a
tetrahedron. The graph and the operations are
shown in Figure 5. When these operations are
applied to it, the resultant polyhedron can be fit
within an inside region of the tetrahedron be-
cause our iterative deformation algorithm does
not care about intersecting faces. Operation (a)
adds a vertex that separates a face into three
faces. The additional faces can be realized as
an excavation of a tetrahedron. The additional
faces generated by operation (b) will be realized
as overlapping coplanar faces resulting in turn-
ing over other faces. Operation (c) also causes
the turning over of the whole shape, although the
shape will still fit within the tetrahedron.

4. RESULTS
Here we present the results of the enumeration
and reconstructions. Table 1 shows the num-
bers of deltahedral and nondeltahedral graphs.
We can see that more than half of the graphs are
deltahedral graphs. The percentage of nondelta-
hedral graphs is seen to gradually decrease. To
confirm this trend, it may be necessary to inves-
tigate larger graphs. Figures 6 and 7 show the
constructed polyhedra with seven and eight ver-
tices, respectively. Note that each figure is one of
various possible polyhedra. We did not enumer-
ate all the possible realization shapes for each
graph. Fortunately, if we do not allow faces to
intersect, the variations are small in graphs with
ten or fewer vertices. It is easy to manually iden-
tify whether a graph has different shapes. For
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(71,D) (72,D) (73,D)

(74,D) (75,N)

Figure 6: Constructed polyhedra with V = 7.

difficult cases, we manually generated good ini-
tial polyhedra and performed an iterative defor-
mation.

The lengths of all the edges of the constructed
polyhedra are very close to 1. Although there
is an error caused by the numerical calculations,
the maximum difference between the mean edge
length and each edge was under 10−5. In most
cases, the iteration process converged in a few
seconds on a PC with 2.9 GHz Intel Core i7
CPU. The time differed depending on the initial
polyhedron produced by the graph lifting.

5. FINDING THE INFINITE FAMILY OF
NONDELTAHEDRAL GRAPHS

Some graph structures cause face intersections.
For example, in Figure 7, the shape is com-
pletely flat in the case of graph 87. Similar
shapes appear in larger graphs. We can find
the graphs that have the paticular nonrealizable
structures by comparing graphs.

Figure 8 shows graphs which contain the same
partial structures and their realized polyhedra.
As shown in Figure 8, when we form a larger
deltahedra by connecting two smaller deltahedra
along a single face, the original shapes do not
change and the graph of the appended deltahe-
dron can be embedded inside a connecting face.
This operation can be detected by solving the
subgraph isomorphism problem. Hence, we can
obtain a family of nondeltahedral graphs from
one nondeltahedral graph by solving it, without

(81,D) (82,D) (83,D)

(84,D) (85,D) (86,D)

(87,N) (88,D) (89,D)

(810,N) (811,N) (812,N)

(813,N) (814,D)

Figure 7: Constructed polyhedra with V = 8.

the need to realize the polyhedra.
Figure 9 shows an example of a nondeltahe-

dral family. We used graph 87 as a seed and
obtained ten nondeltahedral graphs with nine or
ten vertices. We used a simple backtracking al-
gorithm for the subgraph isomorphism [15]. The
computation times were 140 ms and 2500 ms for
nine and ten vertices, respectively.

This subgraph isomorphism only detects the
connection of two deltahedra that involves a sin-
gle face. Figure 10 is a comparison of a connec-
tion that involves only one face and with one that
involves multiple faces. These shapes look sim-
ilar, but the isomorphism of the subgraphs only
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Table 1: Number of deltahedral graphs.

Vertices 4 5 6 7 8 9 10
Graphs 1 1 2 5 14 50 233

Deltahedral graphs 1 1 2 4 9 36 154
Nondeltahedral graphs 0 0 0 1 5 14 79

(87,N) (926,N)

Figure 8: Graphs with and without the ap-
pendage tetrahedra, and the associated polyhe-
dra.

detects the deformation from left to center. The
right one is a seed of an another nondeltahedral
family. From center to right, an octahedron is at-
tached along two faces. In this case, the original
shapes do not change, but in general, attaching
a deltahedron along multiple faces causes defor-
mations in the original shapes.

The graph 75 can be realized as a polyhe-
dron that does not contain self-intersections.
Such nondeltahedral graphs that are realizable as
polyhedra cannot be used as seeds of the sub-
graph isomorphism problem. A larger graph
may be realizable as a deltahedron because the
attachment changes the dihedral angles of the
edges around the core face.

6. CONCLUSIONS
We have described a method for and the result
of an enumeration of deltahedral graphs which
have ten or less vertices. Not all simple cu-
bic polyhedral graphs can be realized as deltahe-
dra, due to self-intersections or dihedral angles

Single-face augmentation Multiple-face augmentation

Joint face Joint faces

Figure 10: Connection with single faces and
with multiple faces.

of 180◦. We have also shown that the infinite
families of nondeltahedral graphs are obtained
by solving the subgraph isomorphism problem.
This eliminates the nondeltahedral graphs from
the set of cubic polyhedral graphs without the
need for realization, and it may be useful for
finding the deltahedral ones. Our future work is
to improve the discrimination approach by em-
ploying this detection method.

The remaining problem is to determine how
nonrealizability can be characterized. In order
to do this, we need the vertex coordinates be-
cause of the dihedral angles. Our deltahedral
realization problem is similar to the polyhedral
realization problem. We hope that by combin-
ing our iterative deformation process with other
realization or detection methods [7, 12], we will
obtain a method that creates a robust realization
of deltahedra.

It is also necessary to investigate graphs which
have higher genus numbers. Do all triangulated
surfaces with nonzero genus admit a deltahedral
realization? Our realization process is not appli-
cable for surfaces with nonzero genus; however,
an iterative deformation may be useful. It will
be an interesting challenge to find the smallest
deltahedron with g > 0, such as a toroidal delta-
hedron.
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Figure 9: Nondeltahedral family of graph 87 up to ten vertices.
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