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1. Introduction 

Origami is the art of folding paper and traditional in 

the Japanese culture．Despite being an ancient art, in the 

past 60 years, the origami world passed through a 

renaissance[1], due to the great expansion of origami 

worldwide, which was made possible mainly through 

information sharing. One of the progenitors of modern 

origami, Akira Yoshizawa devised a simple system to 

document origami, based on its step-by-step sequence 

that we now call customarily as origami diagrams.  

This expansion led several origami enthusiasts into 

looking origami with objective and mathematical 

perspectives, resulting in a group of modern design 

techniques called origami sekkei (折り紙設計). Within 

this context, another form of origami codification 

became very popular among designers and, posteriorly, 

folders: the crease pattern (CP).  

The crease pattern is the pattern of creases left on the 

square of paper after folding model. An example of 

crease pattern and its folded model is shown in Figure 1. 

The creases left by a mountain fold are represented here 

as red dashed lines and the ones left by a valley fold as 

blue lines.  

This paper describes a method to find all possible 

folding sequences of a given CP using a registered set of 

origami maneuvers. Such a system can be used by 

inexperienced folders that cannot fold a CP or by 

designers that want to diagram their creations. Finding 

the folding sequence to an origami pattern might also be 

important to determine a feasible order to perform the 

folds in an origami-based manufacture process. A 3D 

animation is also generated, allowing users to easily 

visualize the chosen folding sequence.  

 

Figure 1 Example of CP (right) and its folded model 

(left)
[2]. 

2. Related research 

Akitaya et al.[4] proposes an algorithm to fold simple 

crease patterns, constructed with TreeMaker[5], that have 

only rabbit-ear molecules. The steps are achieved using a 

heuristic based on the author’s folding experience to 

apply 10 kinds of origami maneuvers to an empty CP 

until it becomes equal to the input. Following this 

method, a single sequence of intermediary CPs is found, 

their folded form can be calculated using ORIPA[6] and 

the output images can be used to construct the model’s 

diagrams. This algorithm’s range of applicable CPs is 

very small and even simple origami models like the 

traditional samurai helmet cannot be handled. 

A method for simulating rigid origami was proposed 

by Tachi[7], using affine transformations described by 

Hull[8]. To determine the dihedral angles between the 

faces, constraints are created by solving a system 

differential equations for each vertex using Euler 

integration to solve local self-intersection. 

 

2. Characteristics of an origami step 

In origami diagrams, the complexity of all the model 

is divided into steps in which the folder has to perform a 

small number of changes in the creases of the CP, 

manipulating only a portion of the model. 

There is a basic set of origami steps that is recurrently 

used in diagrams, so that they have been given names. 

Due to space restrictions we will analyze only the inside 

reverse fold (or just reverse fold) as an example. Figure 2 

shows a diagram representing a reverse fold and the 

modifications caused on the CP. 

 

Figure 2 Example of diagrams with the changes each step 

causes in the CP. 



2.1. Simple mountain and valley folds 

When just one layer of paper is folded, there will be 

the simple addition of such crease to the crease pattern 

(as shown in Figure 3.a). However, as multiple layers are 

folded by a single valley/mountain step, more than one 

crease is added to the CP (like shown in Figure 3.b).  

Let A be the set of creases added to the CP after a 

simple valley/mountain step. For any crease 𝑐𝑖 ∈ 𝐴, if 

another crease 𝑐𝑗 ∈ 𝐴 shares a vertex in common 𝑣𝑖𝑗 

with 𝑐𝑖, we say that 𝑐𝑗  is a reflection crease (since one 

is the mirrored image of the other) of 𝑐𝑖. The reflection 

creases have two properties that allow us to identify them 

in a CP: a) there is always a crease bisecting the angle 

formed by a reflection pair; b) the crease orientation 

(mountain/valley) of a crease is always the opposite of its 

reflection. 

 

Figure 3   Example of simple valley fold: a) folding 

through just one layer; b) folding through multiple layers. 

The green lines symbolize a cut through the fold line seen 

from bottom view to show the configuration of the layers 

being folded. 

 

If the pair 𝑐𝑖  and 𝑐𝑗  is removed the condition of local 

flat foldability[9] will not be affected for the vertex 𝑣𝑖𝑗. 

The path formed by a chain of reflection pairs is called a 

reflection path. If a reflection path i) begins and ends on 

the edge of the paper or ii) forms a cycle, it is called a 

complete reflection path. (like the path highlighted in 

Figure 3.b). 

We can conclude that the removal of a complete 

reflection path does not affecting local flat foldability. A 

reflection path that has just one of its ends on the edge of 

the paper is called a semi-complete reflection path. In 

this work we will call origami maneuver an origami step 

that, when applied, increases the CP complexity (number 

of reflection paths). 

 

3. Proposed Method 

The proposed method tries to recognize the 

characteristics that an origami maneuver leaves on a CP 

after applied. By doing this, we can then unfold such 

maneuver, leading into a simpler CP (decreasing its 

degree of complexity). Repeating those processes should 

result in a CP with zero complexity, i.e. an unfolded 

square. 

To do this, a graph model for the CP is made, and the 

unfolding process is modeled into a graph rewriting step. 

3.1. CP graph representation 

A crease pattern is an embedded graph whose edges 

are creases inside the paper. Each crease has an 

orientation (valley/mountain) and a position (linking two 

vertices). Each vertex 𝑣𝑖 of the CP can be represented 

by a node with two attributes for position and a circular 

linked list 𝐿𝑖 to order the edges according to the angle 

between the edge and the x-axis (preserving topological 

information). Each crease 𝑒𝑖 can be represented by a 

pair of nodes and a type to assign its orientation. 

 

CP = (𝑉, 𝐸); 

V = {𝑣𝑖}𝑖∈[0,𝑛] ;       𝑣𝑖 = (𝑥, 𝑦, 𝐿𝑖) ;           

𝑥, 𝑦 𝜖 ℝ;     (1) 

E = {𝑒𝑖}𝑖∈[0,𝑚];        𝑒𝑖 = ({𝑣𝑗, 𝑣𝑘}, 𝑡);         

 𝑗 ≠ 𝑘;    𝑗, 𝑘 ∈ [0, 𝑛];     

𝑡 ∈ {𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛, 𝑣𝑎𝑙𝑙𝑒𝑦}; 

3.2. Origami maneuver as a rewriting step 

Let 𝐶𝑃0  be the initial CP (that corresponds to the 

model at the last step of the diagrams) and 𝐶𝑃−1 the CP 

representing the state of the model in the penultimate 

step of the diagrams. We can model a reverse fold as a 

graph rewriting step in which we transform a subgraph 

matching the pattern S𝑟𝑒𝑣𝑒𝑟𝑠𝑒  into the graph S`𝑟𝑒𝑣𝑒𝑟𝑠𝑒  

(this rewriting rule can be written as the morphism 

r: S𝑟𝑒𝑣𝑒𝑟𝑠𝑒 → S`𝑟𝑒𝑣𝑒𝑟𝑠𝑒).  

We denote 𝐶𝑃−1
𝑟
⇒𝐶𝑃0  to express that 𝐶𝑃0  is the 

result of the rewriting step that has 𝐶𝑃−1 as the host 

graph and r as the rewriting rule. By finding a matching 

for S`𝑟𝑒𝑣𝑒𝑟𝑠𝑒  in 𝐶𝑃0 , we can, then, find a possible 

occurrence of a reverse fold in the diagrams (𝐶𝑃0
𝑟−1

⇒ 𝐶𝑃−1, 

thus finding 𝐶𝑃−1  by application of the reverse rule 

𝑟−1: S𝑟𝑒𝑣𝑒𝑟𝑠𝑒 → S`𝑟𝑒𝑣𝑒𝑟𝑠𝑒). 

 

Figure 4  Example of reverse fold as graph rewriting. 



3.3. Matching validation process 

In simple examples in which each fold of a maneuver 

pattern modifies just one layer of paper (like the one 

shown in Figure 4), the simple rewriting step is enough 

to generate the previous step. But when the folds affect 

more layers of paper, they cause the addition of 

reflection creases. Those reflection creases also have to 

be removed in order to unfold the step properly.  

If the rewriting step is not enough to assure local flat 

foldability on a node, this node must be on the edge of 

the paper or connected to a semi-complete reflection path. 

If all nodes of a matching obey the above mentioned rule, 

this matching is valid. Figure 5a) exemplify an invalid 

matching; 5.b), 5.c) 5.d) exemplifies a case of a valid 

matching and its unfolding result. 

 

Figure 5  a), b) and c) represents the same CP. a)Example 

of invalid matching of reverse fold; b) Example of a valid 

reverse fold matching;  c)Two semi-complete reflection 

path are highlighted; d) CP after applying the unfolding 

technique and its folded form. 

 

3.4. The step sequence graph 

Let the registered set of origami maneuvers rewriting 

rules 𝐌 = {(𝑺𝒊 → 𝑺`𝒊)}𝒊𝝐[𝟎,𝒍] . For a general state of the 

origami model represented by 𝐶𝑃n, there might be more 

than one pattern matching, considering both multiple 

occurrences of the same rule as occurrences of different 

maneuver rules. This fact shows that the previous step 

𝐶𝑃n−1 is not unique. We represent as 𝐶𝑃n−1
k the k-th 

previous step generated by the unfolding algorithm 

applied to 𝐶𝑃n. 

Because the first step of the diagram must always be 

the unfolded square, we can also expect that CPs of the 

sequence may also have more than one next step. For 

example, CP−1
2 ⇒ CP−3

1  and CP−2
1 ⇒ CP−3

1  might occur. 

We can organize all the steps into a directed graph as 

shown in Figure 6 that is called step-graph. By filling the 

step-graph, we have all possibilities to unfold the input 

model with the maneuvers within M. If we get a node 

representing the unfolded paper (i.e. ∃i, j | CP−𝑖
𝑗
=

(∅, ∅)), 𝐶𝑃0  is foldable under M. If we invert the edges 

of the step sequence graph every path beginning with the 

unfolded paper and ending with 𝐶𝑃0  is a possible 

step-by-step sequence. 

 

Figure 6  Example of step sequence graph for the 

traditional fish base. M contains reverse fold, rabbit-ear 

fold and simple valley/mountain folds.  

 

4. Simulation  

After one possible folding sequence is chosen from the 

step sequence graph, a 3D animation of the folding 

process can be created using affine transformations as de 

cribbed in [8]. As the number of moving faces is usually 

small when animating a single maneuver, an easier and 

straightforward approach was used as constraints to 

determine the dihedral angles. 

Considering each vertex as the center of a sphere with 

radius equal to one, the interception of the faces and 

sphere is a spherical polygon. By dividing this polygon 

into spherical triangles, it is possible to calculate each 

dihedral angle applying the spherical law of cosines. For 

the non-rigid-foldable maneuvers, the angular velocity of 

each face is maintained constant and distortion is added 

to join adjacent faces. 

 

5. Results 

The implemented software uses brute force to solve 

the subgraph isomorphism in the rewriting steps. The 

GUI is shown in Figure 7. The input is a ORIPA file 

containing 𝐶𝑃0 . 

 

Figure 7  Software implementation GUI. 



5.1. Sequence generation results 

The GUI allows the user to navigate through the step 

sequence graph from the square towards the folded form 

in an intuitive way. 

The foldability of a model is related with M. With M 

containing 4 basic folds (inside reverse fold, outside 

reverse fold, squash fold and petal fold), it is possible to 

fold most of traditional models and some simple modern 

designed models like the one illustrated in Figure 1. 

More complex models should require more specific 

maneuvers.  

Table 1 shows some statistics about the computation 

time (computation time was measured using the 

following environment: Intel® Core™ i7-2600 CPU 

3.4GHz, RAM: 4GB) and complexity for some examples 

handled by the software. We can conclude by the results 

that the cost explodes as the complexity of the model 

increases. This is due to the increase of folding 

possibilities. 

Table 1 Computation cost for three examples 

(* referring to the step sequence graph) 

 
Comp. 

time (ms) 

Number 

of nodes* 

Number 

of arcs* 

 

Figure 2 example 

295 23 51 

 

Traditional crane 

451 41 75 

 

Traditional frog base 

1,780,582 22,665 73,204 

 

The simulation result shows that for simple maneuvers, 

collisions were avoided and the faces movement could 

be determined smoothly using spherical geometry. 

 

Figure 8  Simulating the folding sequence of the diagrams 

of a traditional crane.  

 

6. Conclusion and future work 

In this work, a method for finding folding sequences 

from origami crease patterns using graph pattern 

matching have been presented along with its partial 

software implementation. The software can handle CPs 

that can be folded only with simple valley and mountain 

folds and simple maneuvers, but the software gives the 

possibility to expand its scope, by inputting new 

maneuvers into the maneuver registration file. It can 

accelerate substantially the task of diagramming.  

Considerations about maneuver priorities and model 

symmetry can solve the problem of explosion of 

possibilities shown in section 5.1, discarding possibilities 

of candidates that should rarely be chosen. In the 

simulation, global self-intersection avoidance is still not 

solved. There are also maneuvers that are not rigidly 

foldable, meaning that there should be distortions in the 

faces of paper. We intend also to investigate a smooth 

way to perform this in 3D animation.  
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