
Efficiently Modeling 3D Scenes
 from a Single Image

Satoshi Iizuka1 Yoshihiro Kanamori1 Jun Mitani1,2 Yukio Fukui1

1University of Tsukuba 2JST ERATO
e-mail: iizuka@npal.cs.tsukuba.ac.jp {kanamori, mitani, fukui}@cs.tsukuba.ac.jp

Abstract— This paper presents a system for assisting the user to
create a 3D model easily and quickly from a single image. Our
scene model is composed of a background and foreground objects
whose coordinates are calculated based on a “boundary” between
“ground” and “wall”. Moreover, we introduce a fast method for
extracting a foreground object by combining image segmentation
and graph cut-based optimization. We show that the proposed
system enables efficient modeling of foreground objects, easy
creation of their textures, and rapid construction of a 3D scene
model that is simple but produces sufficient 3D effects.

Keywords: image-based modeling/rendering, single view modeling,
foreground extraction

1 INTRODUCTION
Recently, approaches for creating a photorealistic scene based
on image-based rendering have been of much attention. In
these methods, realistic 3D scenes can be generated without
modeling accurate geometry thanks to the use of images as
textures. By moving the viewpoint in the scene, users can
experience a virtual walkthrough in the image. These methods
are often used for a three-dimensional representation of a scene
and have been adopted for general applications such as
Microsoft Photosynth or the street views from Google maps.
However, the typical previous methods often demand a dozen
numbers of photographs or special devices, or require
complicated and time-consuming tasks.

In this paper, we present a system for creating a 3D scene with
simple user inputs from a single image. Our scene model is
composed of a background model and foreground models
made of simple textured planner polygons. In order to calculate
the coordinates of the 3D model, the user interactively specifies
the boundary with a polygonal line between “ground” and
“wall”. Based on the boundary, depth is assigned to each model.
We also propose a method for fast extraction of foreground
objects using image segmentation and graph cut optimization
to model the foreground objects. Although these models are
simple and do not reconstruct accurate 3D geometry of the
input image, the user can obtain convincing 3D effects through
a walkthrough animation produced by our system.

Our method requires only a single image as input. Thus, even a
single-view image, e.g., an oversea landscape image from the
Internet or a scenery painting, suffices to allow the user to walk
around in the virtual 3D scene. Of course, our system does not

always work well. However, compared to existing methods,
our system can handle various types of landscape images
interactively and can be a useful tool for constructing a
walkthrough animation from an image.

2 RELATED WORK
There are many research studies for constructing a 3D model
using image-based rendering. The recent general applications
such as the street views from Google maps can construct a
wide range of a scene using a large number of photographs
overlapping with each other. Similarly, there have been several
methods that construct 3D models from multiple photographs
or movies with user interactions for specifying object shapes or
depth [Debevec et al. 1996; Chen et al. 2011]. These methods,
however, need considerable user interaction or are hard to be
adopted in case that only a single or a few images are available.
Compared to these approaches, making a 3D model from only
a single image is more difficult because of the less information
about the scene.

Several methods to create a 3D model from a single image
have been proposed previously. Hoiem et al. [2005] proposed a
fully automatic method based on machine learning and image
segmentation. Their method classifies regions in the image into
three categories (“ground”, “sky” and “vertical”) and then
creates a 3D model using the regional information. Another
method of automatic model construction, Make3D [Saxena et
al. 2009] uses a Markov Random Field to estimate a correct 3D
model structure from a single still image. Although above-
mentioned methods are fully automatic, they often fail to
reconstruct the scene structure due to errors of depth estimation
or image segmentation. Moreover, these methods are difficult
to model foreground objects. Unlike these methods, Zhang et al.
[2001] described a modeling method of free-form scenes that
are constructed of curved surfaces using a sparse set of user-
specified constraints on the shape of the scene. In this method,
the user should specify many constraints such as surface
positions to make a 3D model, and the interface is less intuitive.
Oh et al. [2001] proposed an interactive system for modeling a
3D scene by representing the scene as a layered collection of
depth images. This system allows users to edit the shape, color,
and illumination of the image-based objects, but the whole
process imposes significant manual labors (e.g., segmentation
of the image into layers, creation of textures using a clone
brushing tool, and the depth assignment) in editing the image.
The Tour Into the Picture (TIP) [Horry et al. 1997] is a simple

Figure 1: Overview of our 3D scene construction. (a) Given a single image, the user specifies (b) the boundary by a polyline (blue
dashed line) and lassoes foreground objects by a brush interface (blue line). Then, (c) the texture images of background and
foreground objects and (d) a 3D polygon model is constructed at once. (e) The 3D scene model is generated by mapping the
textures onto the corresponding polygons. (f) The user can experience walkthroughs in the scene.

user-guided method that constructs a simple 3D model with
five polygons (floor, right wall, left wall, rear wall, and
ceiling) based on a vanishing point. Kang et al. [2001]
improved the TIP by using a vanishing line rather than a
vanishing point to handle more various types of outdoor
images including horizons. The use of horizons, however,
impedes applications of this method to urban or indoor scenes
where complex structures often appear. Furthermore, preparing
textures is the most time-consuming manual process.

In this paper, we propose an efficient single-view modeling
system that semi-automatically accomplishes the whole
processes for making walkthrough animations, including
accurate foreground extraction, successive image completion
(inpainting) for the background texture as well as calculation of
the scene geometry. These processes are performed with quite
simple user inputs and do not require complicated 3D
operations; the user just has to draw a few strokes on the image,
i.e., to draw a polygonal line on the boundary between “ground”
and “wall”, and to place a lasso around the object.

3 SYSTEM OVERVIEW
Our goal is to obtain 3D walkthrough animations from a single
image with simple and intuitive user operations. Particularly,
inspired by the pioneering work “Tour Into the Picture” (TIP)
[Horry et al. 1997], we focus on construction of scene models
that are simple but provides convincing 3D effects, instead of
modeling complicated geometries accurately. The main
contribution of this paper is the overall design of an interactive
system that allows construction of such models from simple
and intuitive user inputs, without requiring technical skills on
3D modeling and image editing.

Given a single scenery image including the flat ground, our
system constructs a simple 3D scene consisting of a

background model and foreground models made of textured
polygons. The foreground models are vertically placed on the
ground region of the background model. To make a scene
model, the user employs only two simple tasks;

1) drawing of a boundary with a polygonal line, and

2) lassoing the foreground object coarsely for extracting them.

These tasks are fully performed on the 2D image and do not
require any complex 3D operations. Figure 1 shows the
overview of our system.

3.1 Definition of the boundary line
The scene model is determined by the boundary that is
interactively specified by the user. In this paper, we define the
boundary as a polygonal line that separates the image into the
ground plane and wall plane. For example, in Figure 1(b), the
boundary separates the scene into the ground and buildings.
The buildings and sky in the image are represented as wall
planes in the model. In the case where the boundary becomes a
curve as illustrated in Figure 8(e), the boundary can be
approximately specified by adding more vertices to the
polygonal line. Based on the boundary, our system determines
the 3D structure of the background model and the positions of
foreground models (see Figure 1(e)). Moreover, the boundary
is also used as a constraint to improve the completion of
extracted foreground regions for making a background texture.
The more details are described in Section 4.1.

3.2 Extracting and modeling foreground objects
A foreground object mentioned in this paper is an object that
is placed on the ground region, and is modeled as a single
planar polygon whose texture is extracted from the
corresponding region in the image. In general, accurate

 (a) 2D image (b) 3D model

Figure 2: (a) A 2D image and (b) the corresponding 3D model.

extraction of foreground objects is a time-consuming process.
Therefore, we propose a fast method to extract foreground
regions easily based on image segmentation and graph cut-
based optimization. To extract a foreground object, the user
roughly lassoes a foreground region and then the system
optimizes the region. In case that the extracted region is
inaccurate at the first attempt, the user marks the miss-labeled
parts with a brush tool to label them as foreground or
background. Then, the system refines the extraction according
to this additional user input. As a result of these steps, the user
can obtain a desired labeling of the foreground object.

4 SCENE MODELING
In this section, we introduce the basic algorithms of our system.
Section 4.1 describes the algorithm to create the background
model, and the way to generate the background texture. Section
4.2 presents methods for fast foreground extraction and model
construction with a billboard transform and a ground constraint.

4.1 Background model
The input image is separated into a ground polygon and
multiple vertical polygons based on the boundary specified by
the user (see Figure 2). The background model is constructed
by assigning an appropriate depth value to each vertex of the
ground polygon and vertical polygons. The polygon model is
then textured with an image synthesized from the input image
by extracting the foreground objects and by completing holes
caused by extraction.

In our system, we assume that the camera is located at the
origin, the view direction is towards +𝑧, and the focal length is
𝑓 that is known. Also, the ground plane intersects the bottom of
the image. The model is computed by transforming the
coordinates of vertex i 𝐏𝑖(𝑥𝑖 ,𝑦𝑖) into homogeneous
coordinates 𝐏′𝑖 : (𝑥′𝑖 ,𝑦′𝑖 , 𝑓,𝑤𝑖). Let the screen coordinate of the
bottom-left corner of the image be 𝐏0(𝑥0,𝑦0), and the vertex
with the maximum y value among the boundary vertices
be 𝐏𝑀 (𝑥𝑀,𝑦𝑀) , respectively. Then, their corresponding
homogeneous coordinates are represented as follows:

𝐏′0: (𝑥′0,𝑦′0, 𝑓, 1) 𝐏′𝑀: (𝑥′𝑀 ,𝑦′𝑀 , 𝑓,𝑤𝑚𝑖𝑚)

 (a) completion w/o constraint (b) result w/o constraint

 (c) completion w/ constraint (d) result w/ constraint

Figure 3: Synthesis of the background texture by compositing
the region behind the object from similar patches (yellow). (a)
The statue is labeled as foreground (blue) and (c) the boundary
(red) between the ground and the building is specified. The
result of completion (d) using similar patches with the
boundary constraint (green) is much more natural than (b) that
without the constraint.

where 𝑤𝑚𝑖𝑚 is zero ideally since we assume that 𝐏′𝑀 is an
ideal point. However, an ideal point cannot be displayed, thus
we set 𝑤𝑚𝑖𝑚 to a fractional value (we use 𝑤𝑚𝑖𝑚 = 0.1). Based
on these two coordinates, each vertex of the ground polygon is
computed:

𝐏′𝑖 : (𝑥′𝑖 ,𝑦′𝑖 , 𝑓,𝑤𝑖)

where

𝑤𝑖 =
𝑦𝑖 − 𝑦0
𝑦𝑀 − 𝑦0

𝑤𝑚𝑖𝑚 + 1 −
𝑦𝑖 − 𝑦0
𝑦𝑀 − 𝑦0

　　　(1)

The rest of vertices are calculated based on the constraint that
wall polygons are perpendicular to the ground.

Synthesizing the region behind foreground objects

In addition to the calculation of vertex coordinates, we require
the texture image for the background model. The background
texture image is synthesized from the input image by
extracting foreground objects (see Section 4.2) and completing
the holes caused by the extraction. For the image completion
or inpainting, we employ a very fast patch-based method
called “PatchMatch” [Barnes et al. 2009] to find appropriate
patches from the input image and fill the holes using them.
Our system instantly inpaints the hole every time a foreground

 (a) input image (b) segmentation (c) user input (d) region-based selection

 (e) graph cut optimization (f) modification (g) extracted foreground (h) novel view

Figure 4: Extraction of a foreground object. (a) The input image is (b) segmented in preprocessing by a mean shift-based approach
[Comanniciu and Meer 2002]. (c) The user lassoes a foreground object roughly. (d) The segmented regions outside and across the
lasso stroke are labeled as background, and the rest becomes the initial foreground region. After (e) the graph cut-based
optimization is performed, (f) further user editing is applied to correct the miss-labeled pixels. Finally, (g) the extracted foreground
image is texture-mapped onto the quadrangular polygon to construct the foreground model. (h) The 3D scene is generated by
combining the background and foreground object.

 B – user brush

 L – labeled superpixels

 U – uncertain superpixels

Figure 5: Labeling of superpixels using the user stroke.

object is extracted, and thus the background texture is
available when the extraction is done.

However, naïve inpainting causes artifacts in the inpainted
region when inadequate patches are selected and used (see
Figure 3(b)). To avoid this, we constrain the search space of
similar patches using the boundary line as a guide as follows.
First, the hole region along the boundary is completed with the
patches sampled from the non-hole regions along the
boundary. Then, the upper part of the hole is completed with
patches sampled from the upper region of the boundary, and
similarly for the lower part. Consequently, the boundary plays
two roles in our system; a reference for the calculation of 3D
models and a guide for the synthesis of the background texture.

As a metric of patch similarity, we calculate the sum of
squared distance for patches of size 7×7 pixels in RGB color
space, similarly to [Barnes et al. 2009].

4.2 Foreground model
Extraction of foreground objects is one of the most time-
consuming tasks in image editing. Previous research has
introduced painting-based approaches that let users directly
paint the regions using a brush or boundary-based approaches
that trace the region boundary. However, these methods
sometimes require accurate and detailed user operations
according to the intended foreground shape. To eliminate such
labor-intensive operations, we propose a scribble-based
selection approach whose interface is just like a lasso tool.
Extraction is performed by roughly specifying a possible
foreground region based on nearly-uniform regions called
superpixels, followed by fine optimization of the region based
on graph cut.

As preprocessing, the input image is segmented into
superpixels when loaded using mean shift [Comaniciu and
Meer 2002]. This method handles each pixel as a 5D vector
consisting of the pixel position (x, y) and color (L, u, v), and
applies mean-shift segmentation, yielding high accuracy for
clustering similar pixels in various images. We use the
segmentation with the parameters (ℎ𝑠, ℎ𝑟 ,𝑀) = (7, 4, 100) in
all results in our paper, where ℎ𝑠 is the kernel bandwidth of the
spatial domain, ℎ𝑟 is the kernel bandwidth of the range domain
of the feature vector, and M is the minimum pixel counts of
superpexels. The detailed description of the parameters is
shown in [Comaniciu and Meer 2002]. For example, in Figure
4, the input image is segmented into 568 superpexels.

In the editing session, the user loosely encloses a possible
foreground region using a lasso tool (see Figure 4(c)).
According to the lasso stroke, the labeling of pixels is
determined for each superpixel as shown in Figure 5; the
superpixels outside and across the stroke are labeled as

(a) input image (b) Photoshop Quick Selection (c) [Rother et al. 2004] (d) our method

Figure 6: Comparison with other methods. The user labels pixels as “background” with red strokes and “foreground” with white
strokes, and obtains the resultant extracted objects in blue. Compared to (b) Photoshop Quick Selection and (c) GrabCut [Rother et
al. 2004], (d) our method allows quicker foreground extraction with more rough and fewer sketches.

background (see Figure 4(d)). The inside of the stroke is
labeled as unknown, and then optimized by graph cut. Note
that we use a Gaussian Mixture Models exactly as GrabCut
[Rother et al. 2004]. Whilst the original GrabCut approach
often requires several iterations for graph cut and thus is not
well suited for an interactive use, our method requires almost
no iterations to achieve a sufficient labeling of the foreground
region thanks to the pre-segmentation.

In preparation for failure cases at the initial extraction, our
system also supplies users with manual correction tools. In our
system, the user can correct the miss-labeled regions using
rough brush strokes, as shown in Figure 4(f). Then, the labeling
of pixels is updated in unit of superpixels computed in
preprocessing. The graph cut optimization is performed once
after that. These steps are iterated until the foreground region is
appropriately extracted. This extraction method can label the
foreground region accurately without precise and detailed user
operations.

Figure 6 compares our method with Adobe Photoshop CS5
Quick Selection, which is a powerful image editing tool the
most similar to ours, and our implementation of GrabCut
without “border matting”. The input image size is 800×600
pixels. In our system, pre-segmentation was done when the
image was loaded and took only 0.71 seconds. The time
required for our optimization for a single user stroke was 0.41
seconds. The total time for extracting the foreground regions
including the user operation time is 107 seconds in Photoshop
Quick Selection, 115 seconds in GrabCut, and 18 seconds in
our method. Note that the accuracy of our method depends on
the graph cut optimization, and thus it does not improve the
quality of results than previous graph cut-based approaches like
GrabCut. However, compared to the other methods, our system
achieves more rough strokes and less user interactions by
combining pre-segmentation and graph cut-based optimization.

Care must be taken for the failure cases of image segmentation
in preprocessing; foreground and background pixels can be
mixed in a single segmented region, which breaks the border
between the background and foreground regions. This situation
can be avoided by taking advantage of other selection tools
provided in our system. The user can apply graph cut without
image segmentation or directly paint the regions for labeling.
These options make our system applicable to any foreground
objects.

 (a) input image (b) ground constraint

 (c) result without constraint (d) result with constraint

Figure 7: An example of the ground constraint. (b) The wall
is labeled as the foreground (blue) and the ground constraint is
specified by a line (orange). (c) Without the constraint, the
same depth is assigned to the vertices of the foreground
polygon. (d) The constraint line modifies the depth to fit the
accurate geometry.

The foreground object extracted in this way is modeled as a
quadrangular polygon textured with the corresponding
foreground image, and is located vertically on the ground. The
3D coordinates of the foreground model are computed based
on the pixel coordinate with the minimum y value in the
foreground region using Equation (1).

Billboard transformation. Because a foreground object is
modeled as a planner polygon, it loses the sense of reality if
viewed from the side. To avoid this, our system employs a
billboard transformation technique. This method rotates the
target polygon so that it faces the viewpoint, and it is applied
particularly to a foreground object such as a tree or column-
shaped object that commonly appear in landscape images.

 (a) input image (b) automatic photo pop-up (c) spidery mesh (d) vanishing line (e) boundary line
 [Hoiem et al. 2005] [Horry et al. 1996] [Kang et al. 2001]
Figure 8: Typical results from our system and existing methods for creating walkthrough animations. The yellow lines show the
user input and the red lines represent the remaining wireframe of each model.

Ground constraint. If a foreground object faces an oblique
direction against the camera, the object gets away from the
ground because the same depth is assigned to each vertex by
default (see Figure 7). Our system provides users with a tool
to adjust the depth by specifying the border between the
foreground and ground using a polygonal line. This function
can handle foreground objects composed of multiple polygons.

4.3 Discussion
Here we discuss the design principle for our system while
mentioning the differences between our method and previous
methods. Existing automatic methods such as [Hoiem et al.
2005] and [Saxena et al. 2009] often fail to handle foreground
objects or separation between the ground and vertical regions.
Such tasks are essentially recognition of objects in images
according to their semantic characteristics in the real world,
which is still quite hard for computers. On the other hand, in
the case of human, even a child can easily recognize the
boundaries between the ground and walls or between
foreground and background. The key idea of our system is to
leverage such human recognition capability for model
construction via intuitive operations (i.e., drawing of a
boundary line and lassoes), and to let the system perform
precise operations that human is not good at and might require
much labors and technical skills (e.g., accurate foreground
extraction and texture synthesis), in order to exploit the
advantages of human and computer by combining them.

Recall that the goal of our system is that even casual users can
accomplish the whole processes of making 3D walkthrough
animations from a single image. The work of Oh et al. [2001]
seems excellent as an accurate modeling system for various
scenes because it even enables to edit precise geometries of
objects and lighting effects in the scene. However, the
versatility of their system is at the cost of laborsome manual
operations for, e.g., separating the image into layers, assigning

depth to each layer and inpainting the holes behind foreground
objects. Such versatility and heavy tasks are not appropriate for
easy creation of plausible walkthrough animations, which we
seek.

The Tour Into the Picture [Horry et al.1997; Kang et al. 2001],
which is the most similar to our system and shares the same
goal, concentrates the construction of 3D polygonal models
and leaves the remaining tasks untouched; the user must extract
foreground objects and inpaint holes using photo-retouching
software, which ends up laborsome manual operations
requiring technical skills. Additionally, even for the scenes
without foreground objects, the modeling interfaces such as the
spidery mesh or the vanishing line cannot handle winding or
curved boundaries, as shown in Figure 8(c)(d).

To solve the flaws mentioned above, we propose
1. the boundary interface for more accurate modeling of the

background model (see Figure 8(e)), and
2. on-the-fly extraction and inpainting for foreground

objects with lassoing.
Both of them are accomplished with simple and intuitive
operations, and as a whole our system allows easy creation of
3D walkthrough animations.

5 RESULTS
We implemented our prototype system with C++, OpenGL and
GLUT, and ran the program on a PC with Intel Core i7 620M
2.67GHz CPU and 4.00GB RAM. The sizes of input images
are all in the range of 0.5 to 1 megapixels.

In Figure 1, two streetlights are specified as foreground and the
boundary is specified by a polygonal line with five vertices. As
viewed from the side, the streetlights seem tactile due to the
billboard transformation. A standard tree or a cylindrical object
like the streetlight can be represented by the billboard

transformation. In our scene model, each region such as the
ground or wall is modeled as a planner polygon; the staircase
and the rear building seem unnatural because they are
represented as the same plane.

Figure 8 compares the background modeling of ours and the
existing methods. The figure shows that our boundary interface
can more accurately separate the ground and walls to model
more natural shapes than the automatic pop-up [Hoiem et al.
2005], the spidery mesh interface [Horry et al. 1999] and the
vanishing line interface [Kang et al. 2001]. Compared to
automatic methods [Hoiem et al. 2005], we emphasize that
our human-assisted system offers more flexibility to produce
higher quality as discussed in Section 4.3.

Figure 9 shows several types of input images with foreground
objects and the walkthroughs in the 3D scenes generated by our
system.

Note that the creation time using our system is within 3
minutes (including manual operations) in all examples
illustrated in this paper. The most time-consuming part in the
process is the extraction of the foreground objects. For example,
if foreground extraction is not necessary (the bottom of Figure
8), the creation time is only around 14 seconds, but the time for
the scene with foreground objects (the top row of Figure 9) is
127 seconds. The time increases according to the number of
foreground objects. For this reason, the fast extraction method
in our system plays a very important role in the creation of the
models.

6 CONCLUSION AND FUTUER WORK
In this paper, we have proposed an efficient modeling system
for constructing a 3D scene model from a single image. The
scene model consists of a background model and foreground
models, and the 3D coordinates are computed based on the
boundary between “ground” and “wall”, which is interactively
specified by users. By the modeling scheme using a boundary,
we can make 3D scene models from various types of landscape
images. Whilst our model does not reconstruct an exact
complex geometry in the input image, a realistic walkthrough
animation can be generated by navigating the scene. We have
also introduced a method for extracting a foreground object
easily to model them. This method optimizes the foreground
regions roughly specified by the user based on the combination
of image segmentation and graph cut-based approach. The
extracted foreground region is inpainted automatically to make
a background texture. Our method enables users to model a 3D
scene from a single image more easily and quickly than
previous methods.

Our foreground model is basically represented as a simple
planner polygon. In future work, we would like to construct
the detailed foreground model using an intuitive sketch-based
modeling such as [Chen et al. 2008] for improving the sense

of reality. We also plan to improve the quality of the scene
texture that is elongated due to the perspective projection,
using super-resolution approaches. We believe that our system
enriches the user understanding of photos by navigating into
the scene.

ACKNOWLEDGMENT
We would like to thank the following Flickr users for Creative
Commons imagery: emilio Labrador, ell brown and Jorge
BRAZIL.

REFERENCES
BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND
GOLDMAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28, 3,
24:1–11.

CHEN, J., PARIS, S., WANG, J., MATUSIK, W., COHEN, M., AND
DURAND, F. 2011. The Video Mesh: A Data Structure for Image-
based Three-dimensional Video Editing. In Proceedings of ICCP.

CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., AND SHUM, H.
Y. 2008. Sketching reality: Realistic interpretation of architectural
designs. ACM Transactions on Graphics 27, 2, 11.

COMANICIU, D. AND MEER, P. 2002. A robust approach toward
feature space analysis. IEEE Trans. Pattern Analysis and Machine
Intelligence, 24, 5, 603–619.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling
and rendering architecture from photographs: A hybrid geometry and
image-based approach. In Proceedings of ACM SIGGRAPH, 11–20.

HOIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Automatic
photo pop-up. ACM Trans. Graph. 24, 3, 577–584.

HORRY, Y., ANJYO, K.-I., AND ARAI, K. 1997. Tour into the
picture: using a spidery mesh interface to make animation from a
single image. In Proceedings of ACM SIGGRAPH 97, 225–232.

KANG, H., PYO, S., ANJYO, K., AND SHIN, S. 2001. Tour into the
picture using a vanishing line and its extension to panoramic images.
In Proceedings of Eurographics, 132–141.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editing. In Proceedings of ACM
SIGGRAPH, ACM Press, 433–442.

ROTHER, C., BLAKE, A., AND KOLMOGOROV, V. 2004. Grabcut
- interactive foreground extraction using iterated graph cuts. ACM
Trans. Graph. 24, 3, 309–314.

SAXENA, A., SUN, M., AND NG, A.Y. 2009. Make3D: Learning
3D Scene Structure from a Single Still Image. IEEE Trans. Pattern
Analysis and Machine Intelligence, 31, 5, 824–840.

ZHANG, L., DUGAS-PHOCION, G., SAMSON, J., AND
SEITZ, S. 2001. Single view modeling of free-form scenes. In
Proceedings of CVPR, 990–997.

Figure 9: Given input images (the left-most column) and user inputs (the second column from the left), the walkthrough images
(the third and forth columns from the left) are generated using our system.

	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Definition of the boundary line
	3.2 Extracting and modeling foreground objects

	4 Scene Modeling
	4.1 Background model
	4.2 Foreground model
	4.3 Discussion

	5 Results
	6 Conclusion and Futuer Work
	Acknowledgment
	References

