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Abstract—We propose an image-based virtual fitting system
to reproduce the appearance of fitting during online shopping
for garments. Inputs are whole-body images of a fashion model
and the customer. We create a garment image by cutting out
the garment portion from the image of the fashion model.
If the garment images were naı̈vely superimposed, the fitting
result would look strange mainly because the shape of the
garment will not match the body shape of the customer. In this
paper, we therefore propose a method of reshaping the garment
image based on human body shapes of the fashion model and
the customer to make the fitting result more realistic. The
body shape is automatically estimated from the contours of
the human body, and can easily be retouched if necessary. The
fitting result is refined further by automatic color correction
with reference to the facial regions and a method of retouching
parts that protrude from the rear of the garment image. We
verified the effectiveness of our system through a user test.

Keywords-image-based virtual fitting; image warping; color
constancy;

I. INTRODUCTION

The number of users shopping online for garments has
tended to increase recently, and this is expanding widely as
means of enjoying shopping comfortably from customers’
own homes. However, there is a problem that we cannot try
on clothes because we cannot handle real garments, unlike
shopping in a real bricks-and-mortar store. Since fit is such
an important criterion when buying garments, this is one
reason impeding the spread of online shopping. To address
this problem, there have been proposals for virtual fitting
systems that implement fitting online in a virtual manner.
For example, the online virtual fitting service Awaseba [1]
composites a whole-body image of a registered customer
(hereafter called a “customer image”) with an image of a
garment from a catalog (hereafter called a “garment image”),
and presents an image of the customer apparently wearing
the garment. However, typical online services just provide
virtual fitting by naı̈ve compositing.

Virtual fitting by naı̈ve compositing often produces unnat-
ural images (Fig. 1, right). Whereas this is partially because
of the differences in brightness between the images, the large
cause is that the shape of the garment image does not match
the body shape of the customer. For example, in Fig. 1, the
garment is neither matched to the positions of the arms nor
the width of the trunk.

Figure 1. Virtual fitting by a naı̈ve superimposing. From left, the garment
image, the customer image, and the fitting result. Naı̈ve superimposition
results in an unnatural image mainly because the garment does not match
the body shape.

We therefore introduce an image-based virtual fitting
system that suppresses the unnaturalness of the virtual fitting
image. In our system, the garment image to be fitted is cut
out from an image of it being worn by a fashion model,
and then is warped according to a warping function with
which the body shape of the fashion model matches that
of the customer. This can be considered as warping in the
literature of deformation transfer [2], where deformation
is transferred from a source 3D mesh onto another target
mesh. The body shapes are automatically estimated from
the contours of each human body and can be retouched if
necessary. The brightness differences between the garment
image and the customer image are adjusted automatically
by color correction based on facial colors. Finally, our
system automatically retouches protrusion from the rear of
the composite garment image.

Our contribution lies in the entire design of a novel virtual
fitting system with the following features:

1) garment image reshaping based on wearers’ body
shapes,

2) automatic color correction using facial colors, and
3) automatic retouching of protrusion behind garments.

We confirm the effectiveness of our system by conducting
a user test.

II. RELATED WORK

Existing virtual fitting approaches can be divided into
two main groups, i.e., 3D model-based and 2D image-based
methods.



Figure 2. Overview of our system. Our system first estimates the body-contour models both for the fashion model and the customer, and then warps the
garment cut out from the fashion model’s image so that the garment matches to the customer’s body shape. The fitting result is refined further by automatic
color correction and automatic protrusion retouching.

There have been proposed 3D virtual try-on systems [3]–
[5] that can produce compelling fitting results using mea-
sured 3D human models and cloth simulation based on
physical parameters of garments. Recent dressing simula-
tions [6]–[9] can reproduce detailed drapes or folds of gar-
ments fitted on various different body shapes. Whereas these
simulations often use a 3D avatar as a 3D human model,
customer’s own 3D model can be generated using depth
camera, e.g., Microsoft Kinect, for whole-body scan [10],
[11].

Despite these progress, providing an experience as if the
customer him- or herself wore a specific garment is still dif-
ficult because photorealistic rendering of 3D human models
as well as garments is not handy even now. Additionally,
preparing a huge number of detailed 3D models for garments
in online shops is currently impractical.

Compared to 3D model-based approaches, 2D image-
based methods have advantages that collecting data and pho-
torealistic rendering are relatively easy. As such, there are
example-based approaches that use a pre-recorded database
and find the best matching dataset to provide a virtual
fitting result. The system by Ehara and Saito [12] used
a database of marker-attached T-shirt images in different
poses. Zhou et al. [13] prepared a database of animating
garments in different poses and achieved a real-time virtual
fitting by superimposing a garment fitted onto a person
captured using Kinect. Hilsmann et al. [14] reproduced
the shapes of garments with detailed folds by interpolating
images of garments worn in different poses. These example-

based approaches, however, are hardly applicable in real
apparel websites because of the costly database; for example,
for an apparel website [15], photographs of more than ten
thousand items are taken everyday. In contrast, we reduce
the load of preparation beforehand, by inputting only one
2D image for creating data for one garment.

III. PROPOSED SYSTEM

The flow of our system is shown in Fig. 2. The inputs
to our system are a whole-body image of a fashion model
wearing the garment to be used in the fitting (hereafter
called a “model image”) and a customer image. We first
estimate the body-contour models from contours of the
human bodies in the both input images. The estimated body-
contour models can be retouched by user input if necessary.
We then determine how the garment is to be reshaped
from the body-contour model of the fashion model and that
of the customer. The customer adjusts the position of the
garment image to be composited and a virtual fitting image
is output. Finally, a more natural virtual fitting result is
obtained by correcting the brightness of the customer image
and retouching protrusions.

A. Body-contour model

In our system, contours of human bodies are used to
reshape garments according to the differences of physique
shapes between the fashion model and the customer. Ideally,
we should know the underlying naked body shapes hidden
by clothes, as done by Guan et al. [16]. Their method trains a



Figure 3. Body-contour model. It is a 2D shape that consists of 27 body-
feature points (from p0 to p26, red squares) and body-feature edges that
connect the points. The blue circles indicate the reference points used to
determine body-feature points.

parametric 2D contour model using a database of parametric
3D human models with different proportions and different
poses [17], which requires highly-costly preparation. Our
system instead uses a simple heuristics to estimate a simple
2D shape model while restricting the input poses in which
the arms and feet are slightly spread to avoid occlusions
of body contours (Fig. 3). Our 2D shape model, called a
body-contour model, is specific to our system and can be
estimated with less calculation. Our estimation is of course
error-prone, but the user can modify the estimated model
easily and quickly, as demonstrated in our user test.

The body-contour model consists of body-feature points
and body-feature edges, as shown in Fig. 3. The number of
body-feature points was determined through experiments re-
garding estimation easiness and quality of image reshaping.
Consequently, we selected a total of 27 points at the neck,
shoulder, arm, wrist, armpits, trunk, hips, leg, and ankle on
the left and right sides plus one at the crotch, as shown by
from p0 to p26 in Fig. 3.

1) Heuristic estimation of body-contour model: The po-
sitions of body-feature points are estimated under an as-
sumption that proportional lengths of the body parts are
common to human bodies even though there are individual
differences. For example, the position of the arm joint can be
predicted as being at a position about one-third of the length
from shoulder to fingertips (Fig. 4, left). Our heuristics is
thus to find noticeable points such as necks and shoulders

Figure 4. Ratios used to determine body-feature points. body-feature point
P is determined by the ratio of lengths PA and PB along the contour.
The left image shows an example for body-feature point p2 for the right
arm. In the left image, the squares are body-feature points and the circle
is a reference point.

first, and then apply pre-defined proportions to determine
remaining points.

We first extract a person’s contour by tracing the bound-
ary of a pre-defined mask, and sample the contour at M
equidistant points (we use M = 200). Of the points on this
contour, we take the uppermost one (with the maximum y-
coordinate) to be the point v0 at the top of the head and
number the rest counterclockwise as vi (i = 0, 1, ...,M−1).
We also take the angle subtended by the vertices vi−1, vi

and vi+1 to be θi ∈ [0, 2π] (counterclockwise is positive).
We select body-feature points from p0 to p26 among the M
contour points.

Search for neck and shoulder points. : We extract the
neck and shoulder points as the points that give the greatest
and smallest values of the angle θi when counting along
a given number of contour points from the top-of-the-head
point v0. The neck point p0 on the left side is the point at
which the angle θi is smallest within the range of l points
(we use l = 10) in sequence counterclockwise from v0.
Next, the shoulder point p1 on the left side is the point at
which the angle θi is greatest within the range of m points
(we use m = 10) counterclockwise from p0. We search in a
similar manner clockwise from v0 for the neck and shoulder
points p26 and p25 on the right side.

Search for fingertips, armpits and others. : We then
detect noticeable points such as fingertips and armpits
among the contour points by reversals in the y coordinate,
which we use these points as reference when obtaining the
body-feature points by length ratios, and thus we call them
“reference points”. Note that we do not use the top-of-the-
head point as a reference point. The reference points in our
system are the following seven points (Fig. 3): the fingertips,
armpits, and toetips on the left and right sides, plus the



Figure 5. Comparsion of the feature-point calculation. Body-feature point
p24 is calculated (a) by length ratio and (b) based on external point p24.
In (b), both p24 and the wrist point are calculated more accurately based
on external points.

crotch. Regarding notations, the left and right fingertips
are pleft fingertip and pright fingertip, the left and right
armpits pleft armpit and pright armpit, the left and right
toetips pleft toe and pright toe, and the crotch pcrotch.

The body-feature points for armpits and crotch are se-
lected from reference points: p6 = pright armpit, p20 =
pleft armpit and p13 = pcrotch. For the remaining body-
feature points for the arms and stomach, we determine the
positions according to the pre-defined length ratio between
each pair of certain points, as listed in Fig. 4.

Regarding the internal points at the arm and leg parts, we
also tried the ratio-based approach but often failed because
of accumulated errors. We thus instead find these points from
the corresponding external points at opposite sides according
to the contour normals (Fig. 5). The pairings of the internal
and external points are shown in Table I.

The resultant body-contour models estimated automati-
cally by our heuristics are demonstrated in the accompanying
video.

Table I
PAIRINGS OF INTERNAL AND EXTERNAL BODY-FEATURE POINTS.

Positions Right side Left side
Internal External Internal External

Arms p5 p2 p21 p24

Wrists p4 p3 p22 p23

Legs p12 p9 p14 p17

Ankles p11 p10 p15 p16

B. Garment image reshaping

Using the body-contour models, the garment image is
reshaped to fit the customer’s body shape. We used the 2D
mesh warping of Weng et al. [18] for reshaping the garment
image. Their method suppresses excessive distortions while
trying to keep the area of the input mesh, which seems

Figure 6. Illustration of the calculation of control points from the body-
contour model. The red curve indicates fashion model’s contour while the
blue curve the customer’s. Control point ms

j is selected as the mesh vertex
that is the closest from fashion model’s feature edge.

beneficial for emulating the real behavior of clothes; e.g.,
the trunk part of a too-small shirt should become short when
worn. To apply their method, we first divide a garment
image into a triangular mesh using constrained Delaunay
triangulation. We then automatically set control points for
image warping based on body-contour models as follows.

1) Automatic setting of control points: To apply the
method of Weng et al. [18], we select control points and
designate their destination positions for reshaping. Fig. 6
illustrates this schematically. Let ps

n be fashion model’s
body-feature point and pt

n be customer’s. Control points
ms

j are selected for each body-feature edge, and selected
among mesh vertices that lie within a certain distance from
each body-feature edge. Let mt

j be the destination position
of control point ms

j . mt
j is calculated from the linear sum

of the vectors wn = pt
n − ps

n and wn+1 = pt
n+1 − ps

n+1

as follows:

mt
j = ms

j + (1− α)wn + αwn+1,

α =
(ps

n+1−ps
n)·(ms

j−ps
n)

|ps
n+1

−ps
n|2 . (1)

Note that, if the same mesh vertex is selected as control
points for multiple body-feature edges, the vertex is used as
the control point only for the nearest body-feature edge.

C. Brightness correction based on facial regions

We perform automatic color correction to suppress the
brightness differences between the garment image and the
customer image. This is based on color constancy on facial
colors, i.e., an assumption that the facial colors of the fashion
model and the customer are the same, and the strangeness



is caused solely by the difference of the photographic
environments. Recently, Bianco et al. [19] also proposed a
method for estimating illumination based on facial colors.
Their method learns a database consisting of each pair of a
neutral-color reference card (used to know the ground truth)
and a facial color. Our method is much simpler; we just
adjust the brightness only from a pair of images without
using such database.

Our method works as follows. First, facial regions are
extracted automatically using Active Shape Model [20] both
from the model image and the customer image. Here we
assume that the fashion model is photographed under an
ideal illumination while the customer under an unknown
illumination, and the facial color of the fashion model fm
and that of the customer fc have the following relationship
based on the von Kries model [21]:

fm = Dc,m fc, (2)

where Dc,m is a diagonal matrix that converts colors under
the customer’s illumination into those under the ideal (i.e.,
fashion model’s) illumination. Dc,m is then estimated as
follows.

Dc,m = diag(fc)
−1 fm, (3)

where diag(x) represents a diagonal matrix consisting of the
three components of vector x. We then apply matrix Dc,m to
the customer image. We confirmed that the Lab color space
yields good results by experiments.

In case that the colors of the fashion model and the
customer are largely different, our system lets the customer
choose the most appropriate facial color from face examples
with different colors.

D. Protrusion retouching

1) Local reshaping of image to reduce protrusions: To
prevent customer’s cloth from protruding from the garment
image (Fig. 7, left), we warp the customer image locally
(Fig. 7, right). For this, we use the method of Schaefer et
al. [22] to provide faster feedback. In the following, we
describe how to automatically set control points used for
the image warping.

2) Control point setting: Control points are assigned
automatically along image boundaries and customer’s body
contour (Fig. 10). For image boundaries, 20 control points
are set equidistantly for each vertical and horizontal bound-
ary. For customer’s body contour, 200 control points are set
in the same way as the contour points in Section III-A.

3) Addition of boundary information to garment image:
Control points along customer’s contour are not necessarily
displaced; some parts of the garment contour, e.g., the
throat and cuffs, permit protrusions of customer’s cloth, and
thus control points around such parts do not have to be
moved. We call such edges of the garment contour as “open-
margin edges”. Conversely, edges around shoulders forbid

Figure 8. Open-margin edges (blue) and closed-margin edges (red) of a
garment image. Edges that permit protrusions, e.g., sleeves and neck, are
configured as open-margin edges.

Figure 9. Illustration of control point’s destination. For each closed-margin
edge, control points are searched and moved onto their closed-margin edge.

protrusions and we call such edges of the garment contour as
“closed-margin edges”. Fig. 8 shows an example. By default,
all the edges of the garment contour are set as closed-margin,
and we let the user manually mark open-margin edges.

Control points around closed-margin edges are to be
displaced, and are searched within a trapezoidal region
formed by extensions in contour normal directions from both
endpoints of each closed-margin edge (Fig. 9). If control
points are found within the search region and are outside of
the garment image, they are registered as to be displaced.

4) Displacement of control points: Fig. 9 illustrates how
to determine the destination positions of the control points.
For each control point, we first find its belonging closed-
margin edge. Let m be the displacement direction vector of
the control point, then m is calculated by linear interpolation
of two normals at both endpoints of the closed-margin edge:

m = −(1− α)N(pn)− αN(pn+1)

α =
(qbefore−pn)×N(pn)

(qbefore−pn)×N(pn)+(qbefore−pn+1)×N(pn+1)
(4)

where N(pn) denotes the normal at pn and is calculated
as an unit vector orthogonal to the vector pn+1 − pn−1. ×



Figure 7. Example of protrusion retouching. (a) Before and (b) after the retouching. The red regions in each image are magnified. The protrusions from
the rears of garments are retouched naturally.

Figure 10. Control points (green) and mesh (blue) for the customer image.
Control points are assigned equidistantly along the customer’s contour and
the image boundary.

denotes a 2D vector operation, i.e., a × b = (ax, ay) ×
(bx, by) = ax by − ay bx. qbefore is the position of the
control point before displacement. Its destination qafter is
determined by moving qbefore onto the closed-margin edge
along vector m (Fig. 9).

IV. RESULTS

Our prototype system was written in C++ using OpenGL
and wxWidgets. The execution environment was a PC with
an Intel Core i7-2600 CPU (3.40 Ghz), and 4 GB main
memory, with an NVIDIA GeForce GTX460 GPU.

A. Virtual fitting results

Fig. 11 shows virtual fitting images using our system.
Without garment image reshaping (Fig. 11(c)), the result

looks unnatural because the garment image does not conform
to the arm and leg positions. With reshaping (Fig. 11(d)), the
result becomes better. In Fig. 11(e), color correction reduces
the brightness difference caused by the illumination differ-
ences, and the protrusion retouching makes the result look
closer to real fitting results. Color correction is especially
useful because customers often take photographs under un-
calibrated lights whereas the fashion model are taken under
studio-adjusted lights.

B. User testing

To evaluate the validity of our results, we conducted
experiments with ten students majoring in computer science
(six males and four females). We asked the test subjects to
use images of themselves as customer images and evaluate
whether or not the virtual fitting images created by using
the customer-side system were natural composite images.
We used a five-point Likert scale in the evaluation. We
prepared four garment sets as the garment data for the
virtual fitting: (A) coat, (B) T-shirt and jeans, (C) jacket and
jeans, and (D) poncho and skirt. For each of the garment
sets, we commissioned the creation of two types of virtual
fitting image: virtual fitting images obtained by simple
superimpositions and images created using our system. The
male test subjects were given the three garment sets (A),
(B), and (C) while the female test subjects were given all of
the four sets.

Fig. 12 shows the results. The virtual fitting images cre-
ated using our system were more highly evaluated than those
obtained by simple superimposition, making it clear that
natural composite images are produced using our system.
However, there were also comments by test subjects who
did not score as high as 5, “the thinning of the clothing
conforming to the body shape is unnatural” and “the center



Figure 12. Result of the user test. We asked the subjects whether the
virtual fitting results by our system were satisfactory or not using a five-
point Likert scale. The error bars indicate standard deviations.

lines of the body and the garment image are skew.”
Regarding the time for modifying automatically-estimated

body-contour models, test subjects took 72 seconds on
average. Since this operation need only be done once for
each customer, we believe the time is sufficiently short.

V. CONCLUSIONS AND FUTURE WORK

We have introduced an image-based virtual fitting system
that 1) reshapes the garment image based on wearersfbody
shapes, 2) automatically adjusts brightness differences be-
tween the garment image and the customer image based
on facial colors, and 3) automatically retouches protrusions
of customer’s cloth behind garments. For reshaping, we
proposed a simple body-contour model and its heuristic
estimation method. Garment images are warped so that
fashion model’s body-contour model matches customer’s
body-contour model. We confirmed that out virtual fitting
results were sufficiently natural-looking by conducting a user
test.

Future challenges include more advanced virtual try-on by
fitting a parametric 3D human model [23] to the customer’s
image. That will allow us handle more realistic 3D effects
such as shading changes and cloth deformation.
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